Cells of the methylotrophic yeast Ogataea parapolymorpha have two genes encoding low-affinity phosphate transporters: PHO87, encoding the plasma membrane transporter, and PHO91, encoding a protein, which is homologous to the Saccharomyces cerevisiae vacuolar membrane transporter. Earlier, we reported that inactivation of PHO91 in O. parapolymorpha interferes with methanol utilization due to the lack of activity of methanol oxidase encoded by the MOX gene.
View Article and Find Full Text PDFInorganic polyphosphates and respective metabolic pathways and enzymes are important factors for yeast active growth in unfavorable conditions. However, particular proteins of polyphosphate metabolism remain poorly explored in this context. Here we report biochemical and transcriptomic characterization of the CRN/PPN2 yeast strain (derived from Ppn1-lacking CRN strain) overexpressing poorly studied Ppn2 polyphosphatase.
View Article and Find Full Text PDFMost species are known as endophytes and/or phytopathogens of higher plants and have a worldwide distribution. Recently, information discovered with molecular tools has been also published about the presence of these fungi in the microbiome of truffle fruiting bodies. In the present work, we isolated and identified three strains from truffle fruiting bodies.
View Article and Find Full Text PDFThe cell wall of yeast grown on presence of hexadecane as a sole carbon source undergoes structural and functional changes including the formation of specific supramolecular complexes-canals. The canals contain specific polysaccharides and enzymes that provide primary oxidization of alkanes. In addition, inorganic polyphosphate (polyP) was identified in canals.
View Article and Find Full Text PDFThe complete genome of the naphthalene- and -alkane-degrading strain sp. strain OVF7 was collected and analyzed. Clusters of genes encoding enzymes for the degradation of naphthalene and -alkanes are localized on the chromosome.
View Article and Find Full Text PDF