Publications by authors named "A Iu Gukasov"

Heterogeneous bi-magnetic nanostructured systems have had a sustained interest during the last decades owing to their unique magnetic properties and the wide range of derived potential applications. However, elucidating the details of their magnetic properties can be rather complex. Here, a comprehensive study of Fe O /Mn O core/shell nanoparticles using polarized neutron powder diffraction, which allows disentangling the magnetic contributions of each of the components, is presented.

View Article and Find Full Text PDF

A comprehensive understanding of the ligand field and its influence on the degeneracy and population of -orbitals in a specific coordination environment are crucial for the rational design and enhancement of magnetic anisotropy of single-ion magnets (SIMs). Herein, we report the synthesis and comprehensive magnetic characterization of a highly anisotropic Co SIM, [LCo](TBA) (L is an ,'-chelating oxanilido ligand), that is stable under ambient conditions. Dynamic magnetization measurements show that this SIM exhibits a large energy barrier to spin reversal > 300 K and magnetic blocking up to 3.

View Article and Find Full Text PDF

In this work, the magnetic anisotropy in two iso-structural distorted tetrahedral Co(II) complexes, Co tmtu [ = Cl() and Br(), tmtu = tetra-methyl-thio-urea] is investigated, using a combination of polarized neutron diffraction (PND), very low-temperature high-resolution synchrotron X-ray diffraction and CASSCF/NEVPT2 calculations. Here, it was found consistently among all methods that the compounds have an easy axis of magnetization pointing nearly along the bis-ector of the compression angle, with minute deviations between PND and theory. Importantly, this work represents the first derivation of the atomic susceptibility tensor based on powder PND for a single-molecule magnet and the comparison thereof with calculations and high-resolution X-ray diffraction.

View Article and Find Full Text PDF

A new crystallographic method is proposed in order to refine a spin-resolved atomic orbital model against X-ray and polarized neutron diffraction data. This atomic orbital model is applied to the YTiO perovskite crystal, where orbital ordering has previously been observed by several techniques: X-ray diffraction, polarized neutron diffraction and nuclear magnetic resonance. This method gives the radial extension, orientation and population of outer atomic orbitals for each atom.

View Article and Find Full Text PDF
Article Synopsis
  • 5d iridium oxides, like strontium iridate (Sr₂IrO₄), are being studied for potential new quantum states due to strong spin-orbit coupling and an unconventional Mott insulating state.
  • Researchers used polarized neutron diffraction to measure the magnetization density in Sr₂IrO₄, revealing that its distribution is anisotropic and aspherical, differing from the expected j_{eff}=1/2 model.
  • The study found that the magnetization density showed a dominant xy orbital contribution, suggesting that the relationship to superconducting copper oxides may not be as strong as previously believed.
View Article and Find Full Text PDF