Some perspectives on the use of stable carbon isotopes (13C/12C) in studying production processes are considered. It has been shown that the efficiency of the isotope technique depends on the adequacy of the chosen model. The model of isotope fractionation proposed based on the oscillatory concept of photosynthesis provides for more accurate and comprehensive description of the observed empirical correlations between the yield (bioproductivity) and carbon isotope composition in cereal cultures as compared with the widely used stationary model.
View Article and Find Full Text PDFWe consider the state-of-the-art capabilities and future perspectives of electron-spin triangulation by high-field/high-frequency dipolar electron paramagnetic resonance (EPR) techniques designed for determining the three-dimensional structure of large supra-molecular complexes dissolved in disordered solids. These techniques combine double site-directed spin labeling (SDSL) with orientation-resolving pulsed electron-electron double resonance (PELDOR) spectroscopy. In particular, we appraise the prospects of angular triangulation, which extends the more familiar distance triangulation.
View Article and Find Full Text PDFReaction centers (RCs) from the photosynthetic bacterium Rhodobacter (Rb.) sphaeroides R-26 exhibit changes in the recombination kinetics of the charge-separated radical-pair state, P(·+) Q(A)(·-), composed of the dimeric bacteriochlorophyll donor P and the ubiquinone-10 acceptor Q(A), depending on whether the RCs are cooled to cryogenic temperatures in the dark or under continuous illumination (Kleinfeld et al. Biochemistry 1984, 23, 5780-5786).
View Article and Find Full Text PDFA mathematical model for carbohydrate and carbon dioxide metabolism in a chloroplast has been constructed. If it is taken into consideration that the rate of the efflux of sugars is restricted as their concentration increases, then even with a simplified representation of the work of the Calvin cycle, it can be shown that there is a set of the parameters of the model at which stable oscillations can appear in the system.
View Article and Find Full Text PDFThe combination of high-field electron paramagnetic resonance (EPR) with site-directed spin labeling (SDSL) techniques employing nitroxide radicals has turned out to be particularly powerful in revealing subtle changes of the polarity and proticity profiles in proteins enbedded in membranes. This information can be obtained by orientation-selective high-field EPR resolving principal components of the nitroxide Zeeman (g) and hyperfine ( A) tensors of the spin labels attached to specific molecular sites. In contrast to the g- and A-tensors, the (14)N ( I = 1) quadrupole interaction tensor of the nitroxide spin label has not been exploited in EPR for probing effects of the microenvironment of functional protein sites.
View Article and Find Full Text PDF