Background: All chemical forms of energy and oxygen on Earth are generated via photosynthesis where light energy is converted into redox energy by two photosystems (PS I and PS II). There is an increasing number of PS I 3D structures deposited in the Protein Data Bank (PDB). The Triangular Spatial Relationship (TSR)-based algorithm converts 3D structures into integers (TSR keys).
View Article and Find Full Text PDFPhotosystem I (PS I) is a photosynthetic pigment-protein complex that absorbs light and uses the absorbed energy to initiate electron transfer. Electron transfer has been shown to occur concurrently along two (A- and B-) branches of reaction center (RC) cofactors. The electron transfer chain originates from a special pair of chlorophyll molecules (P700), followed by two chlorophylls and one phylloquinone in each branch (denoted as A, A, A, respectively), converging in a single iron-sulfur complex F.
View Article and Find Full Text PDFBioturbation plays an important role in structuring microbial communities in coastal sediments. This study investigates the bacterial community composition in sediment associated with the ghost shrimp Lepidophthalmus louisianensis at two locations in the Northern Gulf of Mexico (Bay St. Louis, MS, and Choctawhatchee Bay, FL).
View Article and Find Full Text PDFThe prospect of humans inhabiting planetary bodies is gaining interest among research and development communities, with the moon being considered as a transitory base camp and Mars the next planet humans will inhabit. NASA's Mission to Mars program is set to have humans inhabiting Mars within on-planet space camps by the Year 2030, which has tremendously increased research and development for space exploration-including research oriented toward human life support in long-term planetary lodging camps. The sustenance of human life on Mars will not be trivial due to the unavailability of an appropriate atmosphere and usable water.
View Article and Find Full Text PDFHere, we report the draft genome sequence of the siderophilic cyanobacterium Fischerella thermalis JSC-11, which was isolated from an iron-depositing hot spring. JSC-11 has bioremediation potential because it is capable of both extracellular absorption and intracellular mineralization of colloidal iron. This genomic information will facilitate the exploration of JSC-11 for bioremediation.
View Article and Find Full Text PDF