In this work, we present the potential of Fourier transform infrared (FTIR) microspectroscopy to compare on whole cells, in an unbiased and untargeted way, the capacity of bacterial lipopolysaccharide (LPS) and two rationally designed molecules (FP20 and FP20Rha) to activate molecular circuits of innate immunity. These compounds are important drug hits in the development of vaccine adjuvants and tumor immunotherapeutics. The biological assays indicated that FP20Rha was more potent than FP20 in inducing cytokine production in cells and in stimulating IgG antibody production post-vaccination in mice.
View Article and Find Full Text PDFVaccines are one of the greatest achievements of modern medicine. Due to their safer profile, the latest investigations usually focus on subunit vaccines. However, the active component often needs to be coupled with an adjuvant to be effective and properly trigger an immune response.
View Article and Find Full Text PDFLipopolysaccharide (LPS) mimicry leading to toll-like receptor 4 (TLR4) active compounds has been so far based mainly on reproducing the lipid A portion of LPS. Our work led to a series of structurally simplified synthetic TLR4 agonists in preclinical development as vaccine adjuvants called FPs. FPs bind MD2/TLR4 similarly to lipid A, inserting the lipid chains in the MD2 lipophilic cavity.
View Article and Find Full Text PDFEmerging pharmacological strategies that target major virulence factors of antibiotic-resistant Mycobacterium tuberculosis (Mtb) are presented and discussed. This review is divided into three parts corresponding to structures and functions important for Mtb pathogenicity: the cell wall, the lipoarabinomannan, and the secretory proteins. Within the cell wall, we further focus on three biopolymeric sub-components: mycolic acids, arabinogalactan, and peptidoglycan.
View Article and Find Full Text PDF