Publications by authors named "A Iglesias-Juez"

The upgrading of wasted chloroform in hydrodechlorination for the production of olefins such as ethylene and propylene is studied by employing four catalysts (PdCl/CNT, PdCl/CNF, PdN/CNT, and PdN/CNF) prepared by different precursors (PdCl and Pd(NO)) supported on carbon nanotubes (CNT) or carbon nanofibers (CNF). TEM and EXAFS-XANES results confirm that Pd nanoparticle size increases in the order: PdCl/CNT < PdCl/CNF ∼ PdN/CNT < PdN/CNF, descending the electron density of Pd nanoparticles in the same order. It illustrates that PdCl-based catalysts show donation of electrons from support to Pd nanoparticles, which is not observed in PdN-based catalysts.

View Article and Find Full Text PDF

In recent years, the combination of both thermal and photochemical contributions has provided interesting opportunities for solar upgrading of catalytic processes. Photothermal catalysis works at the interface between purely photochemical processes, which involve the direct conversion of photon energy into chemical energy, and classical thermal catalysis, in which the catalyst is activated by temperature. Thus, photothermal catalysis acts in two different ways on the energy path of the reaction.

View Article and Find Full Text PDF

Structure-sensitive catalyzed reactions can be influenced by a number of parameters. So far, it has been established that the formation of Pd-C species is responsible for the behavior of Pd nanoparticles employed as catalysts in a butadiene partial hydrogenation reaction. In this study, we introduce some experimental evidence indicating that subsurface Pd hydride species are governing the reactivity of this reaction.

View Article and Find Full Text PDF

Clean energy vectors are needed towards a fossil fuel-free society, diminishing both greenhouse effect and pollution. Electrochemical water splitting is a clean route to obtain green hydrogen, the cleanest fuel; although efficient electrocatalysts are required to avoid high overpotentials in this process. The combination of inorganic semiconductors with biocatalysts for photoelectrochemical H production is an alternative approach to overcome this challenge.

View Article and Find Full Text PDF

Mn oxides are promising materials for thermochemical heat store, but slow reoxidation of Mn O to Mn O limits efficiency. In contrast, (Mn Fe ) O oxides show an enhanced transformation rate, but fundamental understanding of the role played by Fe cations is lacking. Here, nanoscale characterization of Fe-doped Mn oxides is performed to elucidate how Fe incorporation influences solid-state transformations.

View Article and Find Full Text PDF