Publications by authors named "A Igel"

Prion diseases, or transmissible spongiform encephalopathies (TSEs), are neurodegenerative disorders caused by the accumulation of misfolded conformers (PrP) of the cellular prion protein (PrP). During the pathogenesis, the PrP seeds disseminate in the central nervous system and convert PrP leading to the formation of insoluble assemblies. As for conventional infectious diseases, variations in the clinical manifestation define a specific prion strain which correspond to different PrP structures.

View Article and Find Full Text PDF
Article Synopsis
  • Mammalian prions are infectious proteins formed from misfolded variants of the normal prion protein (PrP), exhibiting different conformations that can self-propagate and cause various prion diseases.
  • Research demonstrates that fibrillar assemblies from recombinant PrP (rPrP) derived from various species (hamster, mouse, human, and bovine) show distinct pathogenic behaviors and strain properties when tested in transgenic mice.
  • The findings indicate that rPrP assemblies can be used to study the transmission of prions and their strain diversity, as they can mimic the adaptation processes of genuine prions despite lacking certain crucial amino acid regions for infectivity.
View Article and Find Full Text PDF

Validation of prion inactivation processes for medical devices relies on in-vivo experimental protocols. However, bioassays are costly, long (1-2 years) and ethically disputable. Additionally, results obtained with one prion strain - for example, 263K (hamster-adapted strain originating from sheep scrapie) - cannot be easily extrapolated to relevant human prion strains, further questioning the utility of bioassays.

View Article and Find Full Text PDF

Background: The manufacturing processes of plasma products include steps that can remove prions. The efficacy of these steps is measured in validation studies using animal brain-derived prion materials called spikes. Because the nature of the prion agent in blood is not known, the relevance of these spikes, particularly with steps that are based on retention mechanisms such as nanofiltration, is important to investigate.

View Article and Find Full Text PDF

It is commonly accepted that the prion replicative propensity and strain structural determinant (SSD) are encoded in the fold of PrP amyloid fibril assemblies. By exploring the quaternary structure dynamicity of several prion strains, we revealed that all mammalian prion assemblies exhibit the generic property of spontaneously generating two sets of discreet infectious tetrameric and dimeric species differing significantly by their specific infectivity. By using perturbation approaches such as dilution and ionic strength variation, we demonstrated that these two oligomeric species were highly dynamic and evolved differently in the presence of chaotropic agents.

View Article and Find Full Text PDF