Publications by authors named "A Ichimura"

Because of the extracellular acidic microenvironment of cancer cells, many pH-responsive molecules have become indispensable materials for bioanalysis and targeted therapy development. pH-Responsive DNA aptamers, which selectively bind to target proteins in cancer cells, have become a key research target in the therapeutic field. However, conventional pH-responsive aptamers have fatal drawbacks, such as complex structures, sequence limitation, and difficulties in mass production, as they require special nucleic acid structures, including the i-motif and DNA triplex.

View Article and Find Full Text PDF

Inflammation triggers various types of diseases that need to be addressed. Macrophages play important roles in the inflammatory responses. As atherosclerosis progresses, macrophages transform into foam cells.

View Article and Find Full Text PDF

Platelet-activating factor (PAF) is expected to increase esophageal motility. However, to the best of our knowledge, this has not been examined. Thus, we investigated the contractile effects of PAF on guinea pig (GP) esophageal muscularis mucosae (EMM) and the extracellular Ca influx pathways responsible.

View Article and Find Full Text PDF

TRIC-A and TRIC-B proteins form homotrimeric cation-permeable channels in the endoplasmic reticulum (ER) and nuclear membranes and are thought to contribute to counterionic flux coupled with store Ca release in various cell types. Serious mutations in the TRIC-B (also referred to as TMEM38B) locus cause autosomal recessive osteogenesis imperfecta (OI), which is characterized by insufficient bone mineralization. We have reported that Tric-b-knockout mice can be used as an OI model; Tric-b deficiency deranges ER Ca handling and thus reduces extracellular matrix (ECM) synthesis in osteoblasts, leading to poor mineralization.

View Article and Find Full Text PDF

Cold-adapted or psychrotrophic fermentative anaerobic bacteria were isolated from rice field soil in a temperate area in Japan using anaerobic enrichment cultures incubated at 5°C. Most isolates were obligately anaerobic, spore-forming rods and affiliated with different lineages of the genus Clostridium based on 16S rRNA gene sequences. The growth temperature ranges and physiological properties of three representative clostridial isolates (C5S7, C5S11, and C5S18) were examined.

View Article and Find Full Text PDF