Publications by authors named "A I Tsapin"

Wolfe-Simon et al. (Research Articles, 3 June 2011, p. 1163; published online 2 December 2010) argued that the bacterial strain GFAJ-1 can vary the elemental composition of its biomolecules by substituting arsenic for phosphorus.

View Article and Find Full Text PDF

Two strains of a Gram-negative, helical, haloalkaliphilic bacterium were isolated from Mono Lake (USA). Both strains were mesophilic and grew between 13 and 55 degrees C, with optimum growth at 35-45 degrees C. The optimum pH for growth was 9.

View Article and Find Full Text PDF

We show that native fluorescence can be used to differentiate classes or groups of organic molecules and biological materials when excitation occurs at specific excitation wavelengths in the deep ultraviolet (UV) region. Native fluorescence excitation-emission maps (EEMs) of pure organic materials, microbiological samples, and environmental background materials were compared using excitation wavelengths between 200-400 nm with emission wavelengths from 270 to 500 nm. These samples included polycyclic aromatic hydrocarbons (PAHs), nitrogen- and sulfur-bearing organic heterocycles, bacterial spores, and bacterial vegetative whole cells (both Gram positive and Gram negative).

View Article and Find Full Text PDF

Two strains of pink-colored aerobic bacteriochlorophyll a-containing bacteria were isolated from aerobic (strain ROS 10) and anaerobic (strain ROS 35) zones of the water column of Mono Lake (California, United States). Cells of the bacteria were nonmotile oval gram-negative rods multiplying by binary fission by means of a constriction. No intracellular membranes were detected.

View Article and Find Full Text PDF

Molecular genetic methods were used to analyze the remnants of microbial ecosystems contained within an ancient oceanic microbial habitat that was recovered from a continental drilled core of black shale approximately 100 million years in age. Bacterial ribosomal RNA genes were vertically amplified from the six different depths of a black shale core associated with a phosphate-rich stratum, defined as one of the mid-Cretaceous oceanic anoxic events (OAEs). Although the black shale core was recovered from a terrestrial coring effort, the recovered 16S rRNA gene sequences showed affinity to microbial communities previously seen in deep-sea sedimentary environments (i.

View Article and Find Full Text PDF