Publications by authors named "A I Saotome-Nakamura"

Background: Spinal muscular atrophy (SMA) is an autosomal recessive genetic neuromuscular disorder with progressive muscle weakness and atrophy, mainly caused by lower motor neuron degeneration resulting from decreased levels of the survival motor neuron protein. Recently, 3 disease-modifying therapies for SMA (nusinersen, onasemnogene abeparvovec, and risdiplam) were approved in Japan that are expected to improve the prognosis of patients with SMA. Long-term clinical follow-up of adult patients treated with disease-modifying therapies and the natural history of SMA are essential to assess the real-world effectiveness of available treatments.

View Article and Find Full Text PDF

Nucleolin (NCL) is a nucleolar protein i.e. involved in the regulation of the nucleolar structure and functions, and consists of three distinct regions: the N-terminal region; the middle region, which contains four RNA-recognition motifs (RRMs); and the C-terminal glycine- and arginine-rich (GAR) region.

View Article and Find Full Text PDF

Aims/introduction: Treatment intensification is commonly delayed in people with type 2 diabetes, resulting in poor glycemic control for an unacceptable length of time and increased risk of complications.

Materials And Methods: This retrospective study investigated clinical inertia in 33,320 Japanese adults with type 2 diabetes treated with oral antidiabetic drugs (OADs) between 2009 and 2018, using data from the Computerized Diabetes Care (CoDiC ) database.

Results: The median time from first reported glycated hemoglobin (HbA1c) ≥7.

View Article and Find Full Text PDF

Plasminogen activator inhibitor-1 (PAI-1) is induced by radiation resulting in endothelial cell impairment, potentially leading to multiple organ failure. Vitronectin (VN) is a 75-kDa glycoprotein (VN) cleaved into two forms (VN or VN) by furin, which is regulated by intracellular PAI-1. VN protects against radiation-induced endothelial cell death, but the mechanisms involved in VN processing and its interactions with intra- and extracellular PAI-1 remain unclear.

View Article and Find Full Text PDF

The generation of induced-pluripotential stem cells- (iPSCs-) derived mesenchymal stem cells (iMSCs) is an attractive and promising approach for preparing large, uniform batches of applicable MSCs that can serve as an alternative cell source of primary MSCs. Appropriate culture surfaces may influence their growth and differentiation potentials during iMSC derivation. The present study compared molecular properties and differentiation potential of derived mouse iPS-MSCs by deriving on gelatin or collagen-coated surfaces.

View Article and Find Full Text PDF