Publications by authors named "A I Noskov"

Two-photon absorption in indirect gap semiconductors is a frequently encountered, but not well-understood phenomenon. To address this, the real-density matrix approach is applied to describe two-photon absorption in silicon through the excitonic response to the interacting fields. This approach produces an analytical expression for the dispersion of the two-photon absorption coefficient for indirect-gap materials and can be used to explain trends in reported experimental data for bulk silicon both old and new with minimal fitting.

View Article and Find Full Text PDF

Photons do not carry sufficient momentum to induce indirect optical transitions in semiconducting materials, such as silicon, necessitating the assistance of lattice phonons to conserve momentum. Compared to direct bandgap semiconductors, this renders silicon a less attractive material for a wide variety of optoelectronic applications. In this work, we introduce an alternative strategy to fulfill the momentum-matching requirement in indirect optical transitions.

View Article and Find Full Text PDF

Biobased biodegradable polymers (BBP) derived from different renewable resources are commonly considered as attractive alternative to petroleum-based polymers, such as polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), etc. It is because they can address the issues of serious environmental problems resulted from accumulation of plastic wastes. In the review current methods of obtaining of most abundant BBP, polylactic acid (PLA) and polyhydroxybutyrate (PHB), have been studied with an emphasis on the toxicity of compounds used for their production and additives improving consumer characteristics of PLA and PHB based market products.

View Article and Find Full Text PDF

The nature of enhanced photoemission in disordered and amorphous solids is an intriguing question. A point in case is light emission in porous and nanostructured silicon, a phenomenon that is still not fully understood. In this work, we study structural photoemission in heterogeneous cross-linked silicon glass, a material that represents an intermediate state between the amorphous and crystalline phases, characterized by a narrow distribution of structure sizes.

View Article and Find Full Text PDF

Ecosystem functions and services are severely threatened by unprecedented global loss in biodiversity. To counteract these trends, it is essential to develop systems to monitor changes in biodiversity for planning, evaluating, and implementing conservation and mitigation actions. However, the implementation of monitoring systems suffers from a trade-off between grain (i.

View Article and Find Full Text PDF