Publications by authors named "A I Ksenofontov"

The risk of developing diabetes and cardiometabolic disorders is associated with increased levels of alpha-aminoadipic acid and disturbances in the metabolism of branched-chain amino acids. The side effects of the widely used antidiabetic drug metformin include impaired degradation of branched-chain amino acids and inhibition of intracellular thiamin transport. These effects may be interconnected, as thiamine deficiency impairs the functioning of thiamine diphosphate (ThDP)-dependent dehydrogenases of 2-oxo acids involved in amino acids degradation, while diabetes is often associated with perturbed thiamine status.

View Article and Find Full Text PDF

The design of fluorescent probes based on biocompatible luminophores for medical diagnostics is one of the rapidly developing areas worldwide. Here, we report the synthesis of a novel BODIPYs containing a propanoic acid residue at the α-position of one of the pyrrole rings conjugated to (+)-myrtenol or thiotherpenoid. Both conjugates are quite photostable (t ∼ 40 h) and exhibit high fluorescence efficiency (φ ∼ 77-90 %).

View Article and Find Full Text PDF

Invasion and adhesion of neutrophils into tissues and their concomitant secretion play an important role in the development of vascular pathologies, including abdominal aortic aneurysm (AAA). Chronic administration of angiotensin II is used to initiate AAA formation in mice. The role of aldosterone in this process is being studied.

View Article and Find Full Text PDF

The structural study of plant viruses is of great importance to reduce the damage caused by these agricultural pathogens and to support their biotechnological applications. Nowadays, X-ray crystallography, NMR spectroscopy and cryo-electron microscopy are well accepted methods to obtain the 3D protein structure with the best resolution. However, for large and complex supramolecular structures such as plant viruses, especially flexible filamentous ones, there are a number of technical limitations to resolving their native structure in solution.

View Article and Find Full Text PDF

Coat proteins (CP) of the potato virus A virions (PVA) contain partially disordered N-terminal domains, which are necessary for performing vital functions of the virus. Comparative analysis of the structures of coat proteins (CPs) in the intact PVA virions and in the virus particles lacking N-terminal 32 amino acids (PVAΔ32) was carried out in this work based on the tritium planigraphy data. Using atomic-resolution structure of the potato virus Y potyvirus (PVY) protein, which is a homolog of the CP PVA, the available CP surfaces in the PVY virion were calculated and the areas of intersubunit/interhelix contacts were determined.

View Article and Find Full Text PDF