Publications by authors named "A I Grigoroudis"

The abundance of biochemical and structural knowledge on the Cyclin-Dependent Kinases (CDKs) has provided a comprehensive but not exhaustive insight into the molecular determinants that govern their function mechanisms. The implementation of structural and functional CDK models towards developing novel anticancer strategies that will specifically target individual or multiple CDKs remains a critical need.More than 250 CDKs crystal structures are available to-date, including truncated or whole, modified or not, active or inactive forms, co-crystallized with the cyclins and/or their respective putative inhibitors, though, to our knowledge, there is no NMR solved structure available to date.

View Article and Find Full Text PDF

Bacterial expression of human proteins continues to present a critical challenge in protein crystallography and drug design. While human cyclin A constructs have been extensively characterized in complex with cyclin dependent kinase 2 (CDK2), efforts to express the monomeric human cyclin A2 in Escherichia coli in a stable form, without the kinase subunit, have been laden with technical difficulties, including solubility, yield and purity. Here, optimized conditions are described with the aim of generating for first time, sufficient quantities of human recombinant cyclin A2 in a soluble and active form for crystallization and ligand characterization purposes.

View Article and Find Full Text PDF

The cyclin groove is an important recognition site for substrates of the cell cycle cyclin dependent kinases and provides an opportunity for highly selective inhibition of kinase activity through a non-ATP competitive mechanism. The key peptide residues of the cyclin binding motif have been studied in order to precisely define the structure-activity relationship for CDK kinase inhibition. Through this information, new insights into the interactions of peptide CDK inhibitors with key subsites of the cyclin binding groove provide for the replacement of binding determinants with more druglike functionality through REPLACE, a strategy for the iterative conversion of peptidic blockers of protein-protein interactions into pharmaceutically relevant compounds.

View Article and Find Full Text PDF

In order to quantify the interactions between molecules of biological interest, the determination of the dissociation constant (K d) is essential. Estimation of the binding affinity in this way is routinely performed in "favorable" conditions for macromolecules. Crucial data for ligand-protein binding elucidation is mainly derived from techniques (e.

View Article and Find Full Text PDF

Background: Studies on bacterial signal transduction systems have revealed complex networks of functional interactions, where the response regulators play a pivotal role. The AtoSC system of E. coli activates the expression of atoDAEB operon genes, and the subsequent catabolism of short-chain fatty acids, upon acetoacetate induction.

View Article and Find Full Text PDF