Publications by authors named "A I Goussev"

Growing interest in quantum computing for practical applications has led to a surge in the availability of programmable machines for executing quantum algorithms. Present-day photonic quantum computers have been limited either to non-deterministic operation, low photon numbers and rates, or fixed random gate sequences. Here we introduce a full-stack hardware-software system for executing many-photon quantum circuit operations using integrated nanophotonics: a programmable chip, operating at room temperature and interfaced with a fully automated control system.

View Article and Find Full Text PDF

Echoes are ubiquitous phenomena in several branches of physics, ranging from acoustics, optics, condensed matter and cold atoms to geophysics. They are at the base of a number of very useful experimental techniques, such as nuclear magnetic resonance, photon echo and time-reversal mirrors. Particularly interesting physical effects are obtained when the echo studies are performed on complex systems, either classically chaotic, disordered or many-body.

View Article and Find Full Text PDF

We address the time decay of the Loschmidt echo, measuring the sensitivity of quantum dynamics to small Hamiltonian perturbations, in one-dimensional integrable systems. Using a semiclassical analysis, we show that the Loschmidt echo may exhibit a well-pronounced regime of exponential decay, similar to the one typically observed in quantum systems whose dynamics is chaotic in the classical limit. We derive an explicit formula for the exponential decay rate in terms of the spectral properties of the unperturbed and perturbed Hamilton operators and the initial state.

View Article and Find Full Text PDF

We develop a systematic asymptotic description for domain wall motion in one-dimensional magnetic nanowires under the influence of small applied magnetic fields and currents and small material anisotropy. The magnetization dynamics, as governed by the Landau-Lifshitz-Gilbert equation, is investigated via a perturbation expansion. We compute leading-order behaviour, propagation velocities and first-order corrections of both travelling waves and oscillatory solutions, and find bifurcations between these two types of solutions.

View Article and Find Full Text PDF

We consider the problem of quantum scattering of a localized wave packet by a weak Gaussian potential in two spatial dimensions. We show that, under certain conditions, this problem bears close analogy with that of focusing (or defocusing) of light rays by a thin optical lens: Quantum interference between straight paths yields the same lens equation as for refracted rays in classical optics.

View Article and Find Full Text PDF