The enhancer-promoter looping model, in which enhancers activate their target genes via physical contact, has long dominated the field of gene regulation. However, the ubiquity of this model has been questioned due to evidence of alternative mechanisms and the lack of its systematic validation, primarily owing to the absence of suitable experimental techniques. In this study, we present a new MNase-based proximity ligation method called MChIP-C, allowing for the measurement of protein-mediated chromatin interactions at single-nucleosome resolution on a genome-wide scale.
View Article and Find Full Text PDFBiochemistry (Mosc)
April 2024
The most prominent representatives of multisubunit SMC complexes, cohesin and condensin, are best known as structural components of mitotic chromosomes. It turned out that these complexes, as well as their bacterial homologues, are molecular motors, the ATP-dependent movement of these complexes along DNA threads leads to the formation of DNA loops. In recent years, we have witnessed an avalanche-like accumulation of data on the process of SMC dependent DNA looping, also known as loop extrusion.
View Article and Find Full Text PDFAccurate duplication and separation of long linear genomic DNA molecules is associated with a number of purely mechanical problems. SMC complexes are key components of the cellular machinery that ensures decatenation of sister chromosomes and compaction of genomic DNA during division. Cohesin, one of the essential eukaryotic SMC complexes, has a typical ring structure with intersubunit pore through which DNA molecules can be threaded.
View Article and Find Full Text PDFThe structure and growth of the solid electrolyte interphase (SEI) region between an electrolyte and an electrode is one of the most fundamental yet less well-understood phenomena in solid-state batteries. We present an atomistic simulation of the SEI growth for one of the currently promising solid electrolytes (LiPSCl), based on ab initio-trained machine learning interatomic potentials, for over 30,000 atoms during 10 ns, well beyond the capabilities of conventional molecular dynamics. This unveils a two-step growth mechanism: a Li-argyrodite chemical reaction leading to the formation of an amorphous phase, followed by a kinetically slower crystallization of the reaction products into a 5LiS·LiP·LiCl solid solution.
View Article and Find Full Text PDF