Publications by authors named "A I Dmitrienko"

Attachment of three different heterocycles with electron donor or acceptor character to a central 1,3,5-triazine core generates readily soluble side-chain free dyes with two displaying soft crystalline mesomorphism and one displaying a nematic liquid crystal phase as confirmed by polarized optical microscopy, calorimetry, gravimetric analysis, and powder X-ray diffraction. Equally intriguing is the dyes' relatively strong electronic communication between donor and acceptor subchromophores that are meta-conjugated to one another, which is experimentally observed as a broad intramolecular charge-transfer absorption that can extend over 100 nm past the most intense absorption event and is computationally confirmed through density functional theory (DFT) evaluations of the molecular ground- and excited-state properties. This molecular design permits the preparation of dyes with panchromatic absorption not just based on the additive absorption of individual subchromophores.

View Article and Find Full Text PDF
Article Synopsis
  • A series of metal complexes (Mn(I), Fe(II), Co(II)) with PN ligands containing secondary amines were synthesized for catalytic transfer hydrogenation of nitriles, using ammonia borane as the hydrogen source.
  • The most effective catalyst was a tetracoordinate Fe(II) bromide complex, marking a significant advancement as it is one of the few effective iron-based catalysts for this type of reaction beyond carbonyl compounds.
  • Mechanistic studies suggest that the secondary amine in the PN ligand aids in a metal-ligand cooperative mechanism, facilitating the conversion of nitriles to primary amines.
View Article and Find Full Text PDF

In this paper, we review recent advances in statistical methods for the evaluation of the heterogeneity of treatment effects (HTE), including subgroup identification and estimation of individualized treatment regimens, from randomized clinical trials and observational studies. We identify several types of approaches using the features introduced in Lipkovich et al (Stat Med 2017;36: 136-196) that distinguish the recommended principled methods from basic methods for HTE evaluation that typically rely on rules of thumb and general guidelines (the methods are often referred to as common practices). We discuss the advantages and disadvantages of various principled methods as well as common measures for evaluating their performance.

View Article and Find Full Text PDF

The germylone dimNHCGe (5, dimNHC=diimino N-heterocyclic carbene) undergoes a [2+2] cycloaddition with isocyanates RNCO (R=4-tolyl or 3,5-xylyl) to furnish novel alkyl carboxamido germylenes 7 (R=4-tolyl) and 8 (R=3,5-xylyl), featuring a C-C bond between the former carbene carbon and the isocyanate moiety. Heating a mixture of 8 with 4-tolyl isocyanate to 100 °C results in isocyanate metathesis, demonstrating reversible C-C bond formation on the reduced germanium compound. DFT calculations suggest that this process occurs via the reductive dissociation of isocyanate from 8 that regenerates the parent Ge(0) compound 5.

View Article and Find Full Text PDF

Molecular Dynamics-based reaction analysis is an indispensable tool for studying processes defying the transition-state theory (TST), where the product ratios do not follow energies of transition states. The main class of such processes is ambimodal reactions, which have a post-transition-state bifurcation, so that several products form a single transition state. Multiple runs of molecular dynamics allow one to sample the space of possibilities and ultimately predict the product ratio without relying on TST; however, no techniques for estimating the reliability of the prediction were proposed so far.

View Article and Find Full Text PDF