Shock waves, the interface of supersonic and subsonic plasma flows, are the primary region for charged particle acceleration in multiple space plasma systems, including Earth's bow shock, which is readily accessible for in-situ measurements. Spacecraft frequently observe relativistic electron populations within this region, characterized by energy levels surpassing those of solar wind electrons by a factor of 10,000 or more. However, mechanisms of such strong acceleration remain elusive.
View Article and Find Full Text PDFIn space plasmas, large-amplitude Alfvén waves can drive compressive perturbations, accelerate ion beams, and lead to plasma heating and the excitation of ion acoustic waves at kinetic scales. This energy channeling from fluid to kinetic scales represents a complementary path to the classical turbulent cascade. Here, we present observational and computational evidence to validate this hypothesis by simultaneously resolving the fluid-scale Alfvén waves, kinetic-scale ion acoustic waves, and their imprints on ion velocity distributions in the Earth's magnetopause boundary layer.
View Article and Find Full Text PDFThe weakly ionized plasma in the Earth's ionosphere is controlled by a complex interplay between solar and magnetospheric inputs from above, atmospheric processes from below, and plasma electrodynamics from within. This interaction results in ionosphere structuring and variability that pose major challenges for accurate ionosphere prediction for global navigation satellite system (GNSS) related applications and space weather research. The ionospheric structuring and variability are often probed using the total electron content (TEC) and its relative perturbations (dTEC).
View Article and Find Full Text PDFWave-particle resonance, a ubiquitous process in the plasma universe, occurs when resonant particles observe a constant wave phase to enable sustained energy transfer. Here, we present spacecraft observations of simultaneous Landau and anomalous resonances between oblique whistler waves and the same group of protons, which are evidenced, respectively, by phase-space rings in parallel-velocity spectra and phase-bunched distributions in gyrophase spectra. Our results indicate the coupling between Landau and anomalous resonances via the overlapping of the resonance islands.
View Article and Find Full Text PDFBackground: Patients with intracranial aneurysms often have comorbidities that require them to take acetylsalicylic acid (ASA). In recent years, many patients with aneurysms have been prescribed ASA to prevent aneurysm enlargement. ASA is also prescribed to patients with intracranial aneurysms in preparation for surgical revascularization.
View Article and Find Full Text PDF