Publications by authors named "A Hutzler"

NASA's Mars 2020 mission has initiated collection of samples from Mars' Jezero Crater, which has a wide range of ancient rocks and rock types from lavas to lacustrine sedimentary rocks. The Mars Sample Return (MSR) Campaign, a joint effort between NASA and ESA, aims to bring the Perseverance collection back to Earth for intense scientific investigation. As the first return of samples from a habitable world, there are important challenges to overcome for the successful implementation of the MSR Campaign from the point of sample collection on Mars to the long-term curation of the samples on Earth.

View Article and Find Full Text PDF

This study examines the effect of various quaternary ammonium groups on AEMWE performance and hydrogen crossover in blends of quaternized polystyrenes with O-PBI. Due to their higher hydroxide conductivity (69 mS cm at 80 °C, 90% RH), trimethylammonium groups enable AEMWE to reach 1.0 A cm at 2.

View Article and Find Full Text PDF
Article Synopsis
  • Anion exchange membrane water electrolysis (AEMWE) is a promising method for producing green hydrogen, as it can use cheaper, non-noble catalysts, but replacing expensive platinum (Pt) catalysts remains a challenge.
  • The study presents a new synthesis method for a ruthenium (Ru)-based catalyst that is much more efficient than existing Pt/C catalysts in alkaline conditions, demonstrating its effectiveness through various tests.
  • The two-step synthesis involves creating a nickel catalyst on carbon first, then depositing Ru evenly across its surface, resulting in lower voltage requirements (1.73 V at 1 A cm) and minimal precious metal usage (0.05 mg cm).
View Article and Find Full Text PDF

Liquid-phase transmission electron microscopy (LP-TEM) is a powerful tool to gain unique insights into dynamics at the nanoscale. The electron probe, however, can induce significant beam effects that often alter observed phenomena such as radiolysis of the aqueous phase. The magnitude of beam-induced radiolysis can be assessed by means of radiation chemistry simulations potentially enabling quantitative application of LP-TEM.

View Article and Find Full Text PDF

The enhanced utilization of noble metal catalysts through highly porous nanostructures is crucial to advancing the commercialization prospects of proton exchange membrane water electrolysis (PEMWE). In this study, hierarchically structured IrO-based nanofiber catalyst materials for acidic water electrolysis are synthesized by electrospinning, a process known for its scalability and ease of operation. A calcination study at various temperatures from 400 to 800 °C is employed to find the best candidates for both electrocatalytic activity and stability.

View Article and Find Full Text PDF