Publications by authors named "A Holst-Jensen"

A proposal of a differentiated regulatory framework for genetically engineered organisms that can stimulate research and development while maintaining oversight and control.[Image: see text]

View Article and Find Full Text PDF
Article Synopsis
  • A correction has been published for the article mentioned.
  • The correction can be found in both the HTML and PDF versions of the paper.
  • However, the original error in the paper itself has not been addressed yet.
View Article and Find Full Text PDF

The standard-curve based simplex quantitative polymerase chain reaction (qPCR) has been the gold standard for DNA target quantification for more than a decade. The large and growing number of individual analyses needed to test for genetically modified organisms (GMOs) is reducing the cost-effectiveness of qPCR. Droplet digital PCR (ddPCR) enables absolute quantification without standard curves, avoids the amplification efficiency bias observed with qPCR, allows more accurate estimations at low target copy numbers and, in combination with multiplexing, significantly improves cost efficiency.

View Article and Find Full Text PDF

High-throughput sequencing (HTS) is becoming the state-of-the-art technology for typing of microbial isolates, especially in clinical samples. Yet, its application is still in its infancy for monitoring and outbreak investigations of foods. Here we review the published literature, covering not only bacterial but also viral and Eukaryote food pathogens, to assess the status and potential of HTS implementation to inform stakeholders, improve food safety and reduce outbreak impacts.

View Article and Find Full Text PDF

DNA metabarcoding provides great potential for species identification in complex samples such as food supplements and traditional medicines. Such a method would aid Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) enforcement officers to combat wildlife crime by preventing illegal trade of endangered plant and animal species. The objective of this research was to develop a multi-locus DNA metabarcoding method for forensic wildlife species identification and to evaluate the applicability and reproducibility of this approach across different laboratories.

View Article and Find Full Text PDF