Comp Biochem Physiol A Mol Integr Physiol
January 2025
Leveraging artificial intelligence (AI) for the analysis of electrocardiograms (ECGs) has the potential to transform diagnosis and estimate the prognosis of not only cardiac but, increasingly, noncardiac conditions. In this review, we summarize clinical studies and AI-enhanced ECG-based clinical applications in the early detection, diagnosis, and estimating prognosis of cardiovascular diseases in the past 5 years (2019-2023). With advancements in deep learning and the rapid increased use of ECG technologies, a large number of clinical studies have been published.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
July 2024
Despite elite human free divers achieving incredible feats in competitive free diving, there has yet to be a study that compares consummate divers, (i.e. northern elephant seals) to highly conditioned free divers (i.
View Article and Find Full Text PDFArtificial intelligence-enabled electrocardiogram (ECG) algorithms are gaining prominence for the early detection of cardiovascular (CV) conditions, including those not traditionally associated with conventional ECG measures or expert interpretation. This study develops and validates such models for simultaneous prediction of 15 different common CV diagnoses at the population level. We conducted a retrospective study that included 1,605,268 ECGs of 244,077 adult patients presenting to 84 emergency departments or hospitals, who underwent at least one 12-lead ECG from February 2007 to April 2020 in Alberta, Canada, and considered 15 CV diagnoses, as identified by International Classification of Diseases, 10th revision (ICD-10) codes: atrial fibrillation (AF), supraventricular tachycardia (SVT), ventricular tachycardia (VT), cardiac arrest (CA), atrioventricular block (AVB), unstable angina (UA), ST-elevation myocardial infarction (STEMI), non-STEMI (NSTEMI), pulmonary embolism (PE), hypertrophic cardiomyopathy (HCM), aortic stenosis (AS), mitral valve prolapse (MVP), mitral valve stenosis (MS), pulmonary hypertension (PHTN), and heart failure (HF).
View Article and Find Full Text PDFThe mammalian brain is exquisitely vulnerable to lack of oxygen. However, the mechanism underlying the brain's sensitivity to hypoxia is incompletely understood. In this narrative review, we present a case for sulfide catabolism as a key defense mechanism of the brain against acute oxygen shortage.
View Article and Find Full Text PDF