Publications by authors named "A Heroux"

Article Synopsis
  • Ultrasound elastography is a noninvasive imaging technique that assesses tissue elasticity to help diagnose diseases and is categorized into strain elastography (SE) and shear-wave elastography (SWE).
  • The accuracy of these methods heavily relies on effective displacement estimation, which is crucial for mapping tissue properties.
  • This review focuses on recent advancements in displacement tracking algorithms, including various techniques like deep learning, and also discusses validation methods, performance metrics, limitations, and future research opportunities in elastography.
View Article and Find Full Text PDF

Image-based prediction models for disease detection are sensitive to changes in data acquisition such as the replacement of scanner hardware or updates to the image processing software. The resulting differences in image characteristics may lead to drifts in clinically relevant performance metrics which could cause harm in clinical decision making, even for models that generalise in terms of area under the receiver-operating characteristic curve. We propose Unsupervised Prediction Alignment, a generic automatic recalibration method that requires no ground truth annotations and only limited amounts of unlabelled example images from the shifted data distribution.

View Article and Find Full Text PDF

Nicotinamide-adenine dinucleotide (NAD) is centrally important to metabolic reactions that involve redox chemistry. In bacteria, NAD biosynthesis is controlled by different transcription factors, depending on the species. Among the four regulators identified so far, the protein NadQ is reported to act as a repressor of the de novo NAD biosynthetic pathway in proteobacteria.

View Article and Find Full Text PDF

Invited for the cover of this issue is the collaborative research team coordinated by Arie van der Lee at the University of Montpellier. The image depicts chiral channels with highly mobile water molecules resulting from the robust self-organization of a simple achiral acetamide. Fully reversible release and re-uptake of water molecules takes place near ambient conditions, with efficient water transport and a good selectivity against NaCl suggesting it to be an efficient candidate for desalination processes.

View Article and Find Full Text PDF
Article Synopsis
  • Achiral 2-hydroxy-N-(diphenylmethyl)acetamide (HNDPA) forms a unique crystalline structure that includes permeable helical water channels as a hydrate.
  • The material demonstrates a robust chiral self-resolution process, maintaining its crystalline form under various conditions and exhibiting reversible water release and uptake.
  • HNDPA channels efficiently transport water at an impressive rate of 3.3 million molecules per second while selectively excluding NaCl, making it a potential candidate for advanced nanomaterial applications.
View Article and Find Full Text PDF