Publications by authors named "A Hernandez-Lain"

Pilocytic astrocytomas (PAs) are benign grade 1 gliomas according to the World Health Organization (WHO). They are common in children but rare in adults in whom they may have a worse prognosis. Pediatric PAs are usually associated with dysregulation of the mitogen-activated protein kinase (MAPK) pathway, often involving BRAF alterations such as the KIAA1549::BRAF (K-B) fusion or V600E mutation.

View Article and Find Full Text PDF

Background: Activating and inhibitory receptors of natural killer (NK) cells such as NKp, NKG2, or CLEC are highly relevant to cold tumors including glioblastoma (GBM). Here, we aimed to characterize the expression of these receptors in GBM to gain insight into their potential role as modulators of the intratumoral microenvironment.

Methods: We performed a transcriptomic analysis of several NK receptors with a focus on the activating receptor encoded by NKG2C, among bulk and single-cell RNA sequencing GBM data sets.

View Article and Find Full Text PDF

Introduction: Pompe Disease (PD) is a lysosomal disorder caused by a deficiency of the enzyme acid alpha-glucosidase (GAA), primarily manifesting as a progressive myopathy with early respiratory involvement. Enzyme replacement therapy (ERT) is available since 2006.

Materials And Methods: We describe 13 patients with partial GAA deficiency, followed at Hospital 12 de Octubre, 8 of whom were receiving treatment.

View Article and Find Full Text PDF

Background And Objectives: Immune-mediated necrotizing myopathy (IMNM) caused by antibodies against 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) is an inflammatory myopathy that has been epidemiologically correlated with previous statin exposure. We characterized in detail a series of 11 young statin-naïve patients experiencing a chronic disease course mimicking a limb-girdle muscular dystrophy. With the hypothesis that HMGCR upregulation may increase immunogenicity and trigger the production of autoantibodies, our aim was to expand pathophysiologic knowledge of this distinct phenotype.

View Article and Find Full Text PDF
Article Synopsis
  • Late-onset Pompe Disease (LOPD) is a rare genetic disorder caused by a deficiency in an enzyme, leading to muscle damage and glycogen accumulation in cells.
  • This study used advanced techniques like single nuclei RNA sequencing to explore gene expression changes in muscle biopsies from LOPD patients compared to healthy controls, revealing significant metabolic shifts and inflammatory responses in affected fibers.
  • Findings suggest potential benefits of enzyme replacement therapy in restoring metabolic function, especially in healthy muscle fibers, emphasizing the importance of using modern methods to understand muscle disease at a cellular level.
View Article and Find Full Text PDF