Publications by authors named "A Herman-Antosiewicz"

Purpose: Autophagy is a degradation process whose activation underlies beneficial effects of caloric restriction. Isothiocyanates (ITCs) induce autophagy in cancer cells, however, their impact on primary cells remains insufficiently explored, particularly in non-epithelial cells. The aim of this study was to investigate whether ITCs induce autophagy in primary (non-immortalized) mesenchymal cells and if so, to determine the molecular mechanism underlying its activation and consequences on cell functioning.

View Article and Find Full Text PDF

Cancer, a complex group of diseases marked by uncontrolled cell growth and invasive behavior, is characterized by distinct hallmarks acquired during tumor development. These hallmarks, first proposed by Douglas Hanahan and Robert Weinberg in 2000, provide a framework for understanding cancer's complexity. Targeting them is a key strategy in cancer therapy.

View Article and Find Full Text PDF

Background: Pancreatic cancer is one of the leading causes of cancer death in Western societies. Its late diagnosis and resistance to chemotherapies result in a high mortality rate; thus, the development of more effective therapies for the treatment of pancreatic cancer is strongly warranted. Usnic acid (UA) is a secondary metabolite of lichens that shows modest antiproliferative activity toward cancer cells.

View Article and Find Full Text PDF

Natural products continue to be an inspiration for new drugs to treat debilitating diseases such as cancer. Usnic acid is a secondary metabolite isolated predominately from lichen species and has been shown to exhibit antiproliferative properties, however its application is limited by poor drug-like properties and low specificity. We report our work on investigating the reactivity of usnic acid for incorporating heterocyclic rings and the divergent reactivity that can be obtained by simply altering the reaction solvent and temperature.

View Article and Find Full Text PDF

Derivatives of usnic acid (UA), a secondary metabolite from lichens, were synthesized to improve its anticancer activity and selectivity. Recently we reported the synthesis and activity of an UA isoxazole derivative, named , against cancer cells of different origins. Herein, the molecular mechanisms underlying its activity and efficacy in vivo were tested.

View Article and Find Full Text PDF