Publications by authors named "A Hampl"

The alveolar-capillary interface is the key functional element of gas exchange in the human lung, and disruptions to this interface can lead to significant medical complications. However, it is currently challenging to adequately model this interface in vitro, as it requires not only the co-culture of human alveolar epithelial and endothelial cells but mainly the preparation of a biocompatible scaffold that mimics the basement membrane. This scaffold should support cell seeding from both sides, and maintain optimal cell adhesion, growth, and differentiation conditions.

View Article and Find Full Text PDF

The development of 3D organoids has provided a valuable tool for studying human tissue and organ development in vitro. Cerebral organoids, in particular, offer a unique platform for investigating neural diseases. However, current methods for generating cerebral organoids suffer from limitations such as labor-intensive protocols and high heterogeneity among organoids.

View Article and Find Full Text PDF

Several in vitro models have been developed to mimic chronic lymphocytic leukemia (CLL) proliferation in immune niches; however, they typically do not induce robust proliferation. We prepared a novel model based on mimicking T-cell signals in vitro and in patient-derived xenografts (PDXs). Six supportive cell lines were prepared by engineering HS5 stromal cells with stable expression of human CD40L, IL4, IL21, and their combinations.

View Article and Find Full Text PDF

Intravenous thrombolysis with a recombinant tissue plasminogen activator (rt-PA) is the first-line treatment of acute ischemic stroke. However, successful recanalization is relatively low and the underlying processes are not completely understood. The goal was to provide insights into clinically important factors potentially limiting rt-PA efficacy such as clot size, rt-PA concentration, clot age and also rt-PA in combination with heparin anticoagulant.

View Article and Find Full Text PDF

Lately, the need for three-dimensional (3D) cell culture has been recognized in order to closely mimic the organization of native tissues. Thus, 3D scaffolds started to be employed to facilitate the 3D cell organization and enable the artificial tissue formation for the emerging tissue engineering applications. 3D scaffolds can be prepared by various techniques, each with certain advantages and disadvantages.

View Article and Find Full Text PDF