Chromogranin A (CgA) is a key luminal actor of secretory granule biogenesis at the trans-Golgi network (TGN) level but the molecular mechanisms involved remain obscure. Here, we investigated the possibility that CgA acts synergistically with specific membrane lipids to trigger secretory granule formation. We show that CgA preferentially interacts with the anionic glycerophospholipid phosphatidic acid (PA).
View Article and Find Full Text PDFWe have implemented a first-principle optimal estimation method to retrieve ozone density profiles using simultaneously tropospheric and stratospheric differential absorption lidar (DIAL) measurements. Our retrieval extends from 2.5 km to about 42 km in altitude, and in the upper troposphere and the lower stratosphere (UTLS) it shows a significant improvement in the overlapping region, where the optimal estimation method (OEM) can retrieve a single ozone profile consistent with the measurements from both lidars.
View Article and Find Full Text PDFLidar measurements of the atmospheric water vapor mixing ratio provide an excellent complement to radiosoundings and passive, ground-based remote sensors. Lidars are now routinely used that can make high spatial-temporal resolution measurements of water vapor from the surface to the stratosphere. Many of these systems can operate during the day and night, with operation only limited by clouds thick enough to significantly attenuate the laser beam.
View Article and Find Full Text PDFThe measurement of temperature in the middle atmosphere with Rayleigh-scatter lidars is an important technique for assessing atmospheric change. Current retrieval schemes for this temperature have several shortcomings, which can be overcome by using an optimal estimation method (OEM). Forward models are presented that completely characterize the measurement and allow the simultaneous retrieval of temperature, dead time, and background.
View Article and Find Full Text PDFThe target artificial light-harvesting antenna, comprising 21 discrete chromophores arranged in a logical order, undergoes photochemical bleaching when dispersed in a thin plastic film. The lowest-energy component, which has an absorption maximum at 660 nm, bleaches through first-order kinetics at a relatively fast rate. The other components bleach more slowly, in part, because their excited-state lifetimes are rendered relatively short by virtue of fast intramolecular electronic energy transfer to the terminal acceptor.
View Article and Find Full Text PDF