Background: Our previous studies indicated that changes in the functioning of the brain glutamatergic system involving the NMDA receptor may affect cytochrome P450 2D (CYP2D) in the brain. Since CYP2D may contribute to the metabolism of neurotransmitters and neurosteroids engaged in the pathology and pharmacology of neuropsychiatric diseases, in the present work we have investigated the effect of compound LY354740, an agonist of glutamatergic metabotropic receptor mGlu, on brain and liver CYP2D.
Methods: The activity (high performance liquid chromatography with fluorescence detection) and protein levels (Western blotting) of CYP2D were measured in the microsomes from the liver and different brain areas of male Wistar rats after 5 day-treatment with LY354740 (10 mg/kg ip).
Cytochrome P450 2D (CYP2D) is important in psychopharmacology as it is engaged in the metabolism of drugs, neurosteroids and neurotransmitters. An unbalanced maternal diet during pregnancy and lactation can cause neurodevelopmental abnormalities and increases the offspring's predisposition to neuropsychiatric diseases. The aim of the present study was to evaluate the effect of maternal modified types of diet: a high-fat diet (HFD) and high-carbohydrate diet (HCD) during pregnancy and lactation on CYP2D in the liver and brain of male offspring at 28 (adolescent) or 63 postnatal days (young adult).
View Article and Find Full Text PDFRecent investigations have highlighted the potential utility of the selective antagonist of the NMDA receptor GluN2B subunit for addressing major depressive disorders. Our previous study showed that the systemic administration of the antagonist of the GluN2B subunit of the NMDA receptor, the compound CP-101,606, affected liver cytochrome P450 expression and activity. To discern between the central and peripheral mechanisms of enzyme regulation, our current study aimed to explore whether the intracerebral administration of CP-101,606 could impact cytochrome P450.
View Article and Find Full Text PDFBackground: Liver cytochrome P450 (CYP) greatly contributes to the metabolism of endogenous substances and drugs. Recent studies have demonstrated that CYP expression in the liver is controlled by the central nervous system via hormonal pathways. In particular, the expression of hepatic CYPs is negatively regulated by the brain serotoninergic system.
View Article and Find Full Text PDFTryptophan is metabolized along three main metabolic pathways, namely the kynurenine, serotonin and indole pathways. The majority of tryptophan is transformed via the kynurenine pathway, catalyzed by tryptophan-2,3-dioxygenase or indoleamine-2,3-dioxygenase, leading to neuroprotective kynurenic acid or neurotoxic quinolinic acid. Serotonin synthesized by tryptophan hydroxylase, and aromatic L-amino acid decarboxylase enters the metabolic cycle: serotonin → N-acetylserotonin → melatonin → 5-methoxytryptamine→serotonin.
View Article and Find Full Text PDF