Cortical neurons of eutherian mammals project to the contralateral hemisphere, crossing the midline primarily via the corpus callosum and the anterior, posterior, and hippocampal commissures. We recently reported and named the thalamic commissures (TCs) as an additional interhemispheric axonal fiber pathway connecting the cortex to the contralateral thalamus in the rodent brain. Here, we demonstrate that TCs also exist in primates and characterize the connectivity of these pathways with high-resolution diffusion-weighted MRI, viral axonal tracing, and fMRI.
View Article and Find Full Text PDFCortical neurons of eutherian mammals project to the contralateral hemisphere, crossing the midline primarily via the corpus callosum and the anterior, posterior, and hippocampal commissures. We recently reported an additional commissural pathway in rodents, termed the thalamic commissures (TCs), as another interhemispheric axonal fiber pathway that connects cortex to the contralateral thalamus. Here, we demonstrate that TCs also exist in primates and characterize the connectivity of these pathways with high-resolution diffusion-weighted magnetic resonance imaging, viral axonal tracing, and functional MRI.
View Article and Find Full Text PDFEpilepsy is among one of the most common neurologic disorders. The role of magnetic resonance imaging (MRI) in the diagnosis and management of patients with epilepsy is well established, and most patients with epilepsy are likely to undergo at least one or more MRI examinations in the course of their disease. Recent advances in high-field MRI have enabled high resolution in vivo visualization of small and intricate anatomic structures that are of great importance in the assessment of seizure disorders.
View Article and Find Full Text PDF