Publications by authors named "A H Rothchild"

Heavy metal contamination in food and water is a major public health concern because heavy metals are toxic in minute amounts. DNAzyme sensors are emerging as a promising tool for rapid onsite detection of heavy metals, which can aid in minimizing exposure. However, DNAzyme activity toward its target metal is not absolute and has cross-reactivity with similar metals, which is a major challenge in the wide-scale application of DNAzyme sensors for environmental monitoring.

View Article and Find Full Text PDF

Alveolar macrophages (AMs) are lower-airway resident myeloid cells and are among the first to respond to inhaled pathogens. Here, we interrogate AM innate sensing to Pathogen Associated Molecular Patterns (PAMPs) and determine AMs have decreased responses to low-dose LPS compared to other macrophages, as measured by TNF, IL-6, , and . We find the reduced response to low-dose LPS correlates with minimal TLR4 and CD14 surface expression, despite sufficient internal expression of TLR4.

View Article and Find Full Text PDF

Alveolar macrophages (AMs) play a critical role during Mycobacterium tuberculosis (Mtb) infection as the first cells in the lung to encounter bacteria. We previously showed that AMs initially respond to Mtb in vivo by mounting a cell-protective, rather than pro-inflammatory response. However, the plasticity of the initial AM response was unknown.

View Article and Find Full Text PDF

Alveolar macrophages (AMs) are lung-resident myeloid cells that sit at the interface of the airway and lung tissue. Under homeostatic conditions, their primary function is to clear debris, dead cells and excess surfactant from the airways. They also serve as innate pulmonary sentinels for respiratory pathogens and environmental airborne particles and as regulators of pulmonary inflammation.

View Article and Find Full Text PDF

Previous studies have identified whole-blood transcriptional risk and disease signatures for tuberculosis; however, several lines of evidence suggest that these signatures primarily reflect bacterial burden, which increases before symptomatic disease. We found that the peripheral blood transcriptome of mice with contained Mycobacterium tuberculosis infection (CMTI) has striking similarities to that of humans with active tuberculosis and that a signature derived from these mice predicts human disease with accuracy comparable to that of signatures derived directly from humans. A set of genes associated with immune defense are up-regulated in mice with CMTI but not in humans with active tuberculosis, suggesting that their up-regulation is associated with bacterial containment.

View Article and Find Full Text PDF