Publications by authors named "A H Lichtman"

Introduction: We demonstrated Toll-like receptor (TLR) 4 in the pathogenesis of angiotensin II (AngII)-mediated abdominal aortic aneurysm (AAA) formation. Here, we study TLR2 in the AAA formation.

Methods: Male ApoE-/- and ApoE-/-TLR2-/- mice were treated with AngII.

View Article and Find Full Text PDF

Sphingosine-1-phosphate (S1P) receptor (S1PR) agonists, such as fingolimod (FTY720), alleviate nociception in preclinical pain models by either activation (agonism) or inhibition (functional antagonism) of S1PR type-1 (S1PR1). However, the dose-dependence and temporal relationship between reversal of nociception and modulation of S1PR1 signaling has not been systematically investigated. This study examined the relationship between FTY720-induced antinociception and S1PR1 adaptation using a sciatic nerve chronic constriction injury (CCI) model of neuropathic pain in male and female C57Bl/6J mice.

View Article and Find Full Text PDF

Fatty acid amide hydrolase (FAAH) serves as the primary enzyme responsible for degrading the endocannabinoid anandamide (AEA). Inhibition of FAAH, either through pharmacological means or genetic manipulation, can effectively reduce inflammation in various organs, including the brain, colon, heart, and kidneys. Infusion of a FAAH inhibitor into the kidney medulla has been shown to induce diuretic and natriuretic effects.

View Article and Find Full Text PDF

Immune-checkpoint inhibitors (ICIs) have revolutionized oncology, with nearly 50% of all patients with cancer eligible for treatment with ICIs. However, patients on ICI therapy are at risk for immune-related toxicities that can affect any organ. Inflammation of the heart muscle, known as myocarditis, resulting from ICI targeting cytotoxic T lymphocyte-associated antigen 4 (CTLA4), programmed cell death protein 1 (PD1) and PD1 ligand 1 (PDL1) is an infrequent but potentially fatal complication.

View Article and Find Full Text PDF

There is an unmet need for safe and efficacious oral therapies for COVID-19 with low potential for drug-drug interactions. Obeldesivir is an orally administered nucleoside prodrug that has shown antiviral potency in nonclinical studies against SARS-CoV-2 and its circulating variants. Obeldesivir is metabolized to the active nucleoside triphosphate (GS-443902), which acts as an inhibitor of the SARS-CoV-2 RNA-dependent RNA polymerase, thereby inhibiting viral RNA synthesis.

View Article and Find Full Text PDF