The variable order wave equation plays a major role in acoustics, electromagnetics, and fluid dynamics. In this paper, we consider the space-time variable order fractional wave equation with variable coefficients. We propose an effective numerical method for solving the aforementioned problem in a bounded domain.
View Article and Find Full Text PDFIn this paper, the fractional-order generalized Laguerre operational matrices (FGLOM) of fractional derivatives and fractional integration are derived. These operational matrices are used together with spectral tau method for solving linear fractional differential equations (FDEs) of order ν (0 < ν < 1) on the half line. An upper bound of the absolute errors is obtained for the approximate and exact solutions.
View Article and Find Full Text PDFScientificWorldJournal
March 2015
We develop the tau-spectral method to solve the time-fractional heat equation (T-FHE) with nonlocal condition. In order to achieve highly accurate solution of this problem, the operational matrix of fractional integration (described in the Riemann-Liouville sense) for shifted Legendre polynomials is investigated in conjunction with tau-spectral scheme and the Legendre operational polynomials are used as the base function. The main advantage in using the presented scheme is that it converts the T-FHE with nonlocal condition to a system of algebraic equations that simplifies the problem.
View Article and Find Full Text PDF