Publications by authors named "A H Berdyshev"

Background: Aging is associated with the slowing down of metabolic processes, diminished physiological processes, changes in hormonal activity and increasing exposure to oxidative stress factors and chronic inflammation. The endocannabinoid system (ECS) is a major signaling network that plays a pro-homeostatic role in the central and peripheral organs of the human body. A class of minor lipids, N-acylethanolamines (NAEs), which do not activate cannabinoid receptors, except for anandamide, but can potentiate the action of endocannabinoids and have a wide spectrum of biological activity and significant adaptogenic potential, belongs to ECS.

View Article and Find Full Text PDF

Background: N-stearoylethanolamine (NSE) is a bioactive lipid amine with a wide range of biological activities. Anti-inflammatory properties of NSE were previously confirmed on multiple animal models. However, the molecular mechanisms of anti-inflammatory action of NSE remain unclear.

View Article and Find Full Text PDF

The review analyzes the change of the existing paradigm of high radioresistance of the nervous system according tothe results of the study of neuropsychiatric disorders in in the aftermath of the Chornobyl accident in both earlyand remote post-accident period. The participation of the endocannabinoid system in ensuring homeostasis andpathology formation, potential possibilities of using cannabis drugs, agonists and antagonists of endocannabinoidreceptors for the treatment of early and long-term effects of radiation are considered.

View Article and Find Full Text PDF

Purpose: We present a new method for knowledge-based isocenter selection for treatment planning in radiosurgery. Our objective is to develop a prediction model that can learn from past manually designed treatment plans. We leverage recent advances in deep learning to predict isocenter locations in treatment plans in order to provide a decision support tool.

View Article and Find Full Text PDF

Stereotactic radiosurgery is an effective technique to treat brain tumors for which several inverse planning methods may be appropriate. We propose an integer programming model to simultaneous sector duration and isocenter optimization (SDIO) problem for Leksell Gamma Knife Icon (Elekta, Stockholm, Sweden) to tractably incorporate treatment time. We devise a Benders decomposition scheme to solve the SDIO problem to optimality.

View Article and Find Full Text PDF