Publications by authors named "A H A Lutey"

Three dimensional (3D) printing technology has pushed state-of-the-art manufacturing towards more advanced processing methods through its ability to produce complex computer-designed 3D structures in a wide range of materials. Two-photon polymerization applied to the fabrication of ultraprecise 3D microstructures is one of the various innovative approaches to cutting-edge 3D printing. The integration of an ultrashort pulsed laser source and an appropriate photoresist has made it an attractive candidate for advanced photonics and biomedical applications.

View Article and Find Full Text PDF

The increasing demand for aesthetics, together with advancements in technology, have contributed to the rise in popularity of all-ceramic restorations. In the last two decades, the continuous progression in ceramic materials science for dental applications has permitted the fabrication of high-strength materials. Amongst these, zirconia-based ceramics have improved in terms of fracture resistance and long-term viability in comparison with other silica-based materials.

View Article and Find Full Text PDF

An original model has been developed for the initial stage of bacterial adhesion on textured surfaces. Based on molecular dynamics, the model describes contact between individual bacterial cells in a planktonic state and a surface, accounting for both the mechanical properties of the cells and the physico-chemical mechanisms governing interaction with the substrate. Feasibility of the model is assessed via comparison with experimental results of bacterial growth on stainless steel substrates textured with ultrashort laser pulses.

View Article and Find Full Text PDF

Escherichia coli and Staphylococcus aureus bacterial retention on mirror-polished and ultrashort pulse laser-textured surfaces is quantified with a new approach based on ISO standards for measurement of antibacterial performance. It is shown that both wettability and surface morphology influence antibacterial behavior, with neither superhydrophobicity nor low surface roughness alone sufficient for reducing initial retention of either tested cell type. Surface structures comprising spikes, laser-induced periodic surface structures (LIPSS) and nano-pillars are produced with 1030 nm wavelength 350 fs laser pulses of energy 19.

View Article and Find Full Text PDF