The deformability of red blood cells (RBCs), expressing their ability to change their shape as a function of flow-induced shear stress, allows them to optimize oxygen delivery to the tissues and minimize their resistance to flow, especially in microcirculation. During physiological aging and blood storage, or under external stimulations, RBCs undergo metabolic and structural alterations, one of which is hemoglobin (Hb) redistribution between the cytosol and the membrane. Consequently, part of the Hb may attach to the cell membrane, and although this process is reversible, the increase in membrane-bound Hb (MBHb) can affect the cell's mechanical properties and deformability in particular.
View Article and Find Full Text PDFRed blood cell (RBC) deformability, expressing their ability to change their shape, allows them to minimize their resistance to flow and optimize oxygen delivery to the tissues. RBC with reduced deformability may lead to increased vascular resistance, capillary occlusion, and impaired perfusion and oxygen delivery. A reduction in deformability, as occurs during RBC physiological aging and under blood storage, is implicated in the pathophysiology of diverse conditions with circulatory disorders and anemias.
View Article and Find Full Text PDFBackground: The prognosis for patients with relapsed and/or refractory (R/R) non-Hodgkin's lymphoma (NHL) or acute lymphoblastic leukaemia (ALL) remains poor, with existing treatments having significant side effects. Developed for the treatment of these cancers, AFM11 is a tetravalent, bispecific humanised recombinant antibody construct (TandAb®) designed to bind to human CD19 and CD3 and lead to the activation of T cells inducing apoptosis and killing of malignant B cells.
Methods: Two open-label, multicentre, dose-escalation phase 1 studies evaluated the safety, pharmacokinetics and activity of AFM11 in patients with R/R CD19-positive B cell NHL (AFM11-101) and in patients with CD19 + B-precursor Philadelphia-chromosome negative ALL (AFM11-102).
Micromachines (Basel)
November 2022
The potential use of nanomaterials in medicine offers opportunities for novel therapeutic approaches to treating complex disorders. For that reason, a new branch of science, named nanotoxicology, which aims to study the dangerous effects of nanomaterials on human health and on the environment, has recently emerged. However, the toxicity and risk associated with nanomaterials are unclear or not completely understood.
View Article and Find Full Text PDFEur Heart J Case Rep
September 2022
Background: Eosinophilic myocarditis (EM) is a rare form of myocarditis with various aetiologies and dire consequences if not diagnosed and treated expeditiously.
Case Summary: We report three cases of EM at different stages of the disease with differing clinical manifestations. We highlight the diagnostic workup including the role of multimodality imaging and endomyocardial biopsy (EMB), and the treatment strategies.