Picosecond timing of single photons has laid the foundation of a great variety of applications, from life sciences to quantum communication, thanks to the combination of ultimate sensitivity with a bandwidth that cannot be reached by analog recording techniques. Nowadays, more and more applications could still be enabled or advanced by progress in the available instrumentation, resulting in a steadily increasing research interest in this field. In this scenario, single-photon avalanche diodes (SPADs) have gained a key position, thanks to the remarkable precision they are able to provide, along with other key advantages like ruggedness, compactness, large signal amplitude, and room temperature operation, which neatly distinguish them from other solutions like superconducting nanowire single-photon detectors and silicon photomultipliers.
View Article and Find Full Text PDFSingle-photon detection is an invaluable tool for many applications ranging from basic research to consumer electronics. In this respect, the Single Photon Avalanche Diode (SPAD) plays a key role in enabling a broad diffusion of these techniques thanks to its remarkable performance, room-temperature operation, and scalability. In this paper we present a silicon technology that allows the fabrication of SPAD-arrays with an unprecedented combination of low timing jitter (95 ps FWHM) and high detection efficiency at red and near infrared wavelengths (peak of 70% at 650 nm, 45% at 800 nm).
View Article and Find Full Text PDFNucl Instrum Methods Phys Res A
December 2018
Single-molecule fluorescence spectroscopy (SMFS), based on the detection of individual molecules freely diffusing through the excitation spot of a confocal microscope, has allowed unprecedented insights into biological processes at the molecular level, but suffers from limited throughput. We have recently introduced a multispot version of SMFS, which allows achieving high-throughput SMFS by virtue of parallelization, and relies on custom silicon single-photon avalanche diode (SPAD) detector arrays. Here, we examine the premise of this parallelization approach, which is that data acquired from different spots is uncorrelated.
View Article and Find Full Text PDFSingle-molecule Förster resonance energy transfer (smFRET) allows measuring distances between donor and acceptor fluorophores on the 3-10 nm range. Solution-based smFRET allows measurement of binding-unbinding events or conformational changes of dye-labeled biomolecules without ensemble averaging and free from surface perturbations. When employing dual (or multi) laser excitation, smFRET allows resolving the number of fluorescent labels on each molecule, greatly enhancing the ability to study heterogeneous samples.
View Article and Find Full Text PDFIEEE Photonics Technol Lett
March 2018
In this letter, the development and the experimental characterization of a new photon detection module, based on a 32×1 red-enhanced single-photon avalanche diode (RE-SPAD) array, are presented. A custom-developed technology has been exploited to design a detector having large-area pixels (50-µm diameter) with optimized performance. With an excess bias voltage = 15 V, a photon detection efficiency as high as 57% at 600 nm (33% at 800 nm) is achieved, along with dark count rate in the kHz range and optical crosstalk probability as low as 0.
View Article and Find Full Text PDF