Publications by authors named "A Guisan"

Climate projections for continental Europe indicate drier summers, increased annual precipitation, and less snowy winters, which are expected to cause shifts in species' distributions. Yet, most regions/countries currently lack comprehensive climate-driven biodiversity projections across taxonomic groups, challenging effective conservation efforts. To address this gap, our study evaluated the potential effects of climate change on the biodiversity of an alpine country of Europe, Switzerland.

View Article and Find Full Text PDF

Numerous plant species are expanding their native ranges due to anthropogenic environmental change. Because cytotypes of polyploid complexes often show similar morphologies, there may be unnoticed range expansions (i.e.

View Article and Find Full Text PDF

The ability of climatic niche models to predict species extinction risks can be hampered if niches are incompletely quantified. This can occur when niches are estimated considering only currently available climatic conditions, disregarding the fact that climate change can open up portions of the fundamental niche that are currently inaccessible to species. Using a new metric, we estimate the prevalence of potential situations of fundamental niche truncation by measuring whether current ecological niche limits are contiguous to the boundaries of currently available climatic conditions for 24,944 species at the global scale in both terrestrial and marine realms and including animals and plants.

View Article and Find Full Text PDF

The Anthropocene is characterized by a rapid pace of environmental change and is causing a multitude of biotic responses, including those that affect the spatial distribution of species. Lagged responses are frequent and species distributions and assemblages are consequently pushed into a disequilibrium state. How the characteristics of environmental change-for example, gradual 'press' disturbances such as rising temperatures due to climate change versus infrequent 'pulse' disturbances such as extreme events-affect the magnitude of responses and the relaxation times of biota has been insufficiently explored.

View Article and Find Full Text PDF

Mounting evidence points to the need for high-resolution climatic data in biodiversity analyses under global change. As we move to finer resolution, other factors than climate, including other abiotic variables and biotic interactions play, however, an increasing role, raising the question of our ability to predict community composition at fine scales. Focusing on two lineages of land plants, bryophytes and tracheophytes, we determine the relative contribution of climatic, non-climatic environmental drivers, spatial effects, community architecture and composition of one lineage to predict community composition of the other lineage, and how our ability to predict community composition varies along an elevation gradient.

View Article and Find Full Text PDF