Publications by authors named "A Guillemin"

Introduction: Qualitative research on the perceptions of healthcare professionals involved in cancer care about their respective roles in the patient care pathway is limited. Therefore, the aim of this qualitative study was to document these perceptions.

Methods: A multidisciplinary team that included patient researchers constructed a semi-structured interview guide on the perceptions of the colorectal cancer care pathway by professionals.

View Article and Find Full Text PDF

Innate immunity is the frontline of defense against infections and tissue damage. It is a fast and semi-specific response involving a myriad of processes essential for protecting the organism. These reactions promote the clearance of danger by activating, among others, an inflammatory response, the complement cascade and by recruiting the adaptive immunity.

View Article and Find Full Text PDF

Background: Nonlinear mixed effects models provide a way to mathematically describe experimental data involving a lot of inter-individual heterogeneity. In order to assess their practical identifiability and estimate confidence intervals for their parameters, most mixed effects modelling programs use the Fisher Information Matrix. However, in complex nonlinear models, this approach can mask practical unidentifiabilities.

View Article and Find Full Text PDF

Statistical physics provides a useful perspective for the analysis of many complex systems; it allows us to relate microscopic fluctuations to macroscopic observations. Developmental biology, but also cell biology more generally, are examples where apparently robust behaviour emerges from highly complex and stochastic sub-cellular processes. Here we attempt to make connections between different theoretical perspectives to gain qualitative insights into the types of cell-fate decision making processes that are at the heart of stem cell and developmental biology.

View Article and Find Full Text PDF

Cell fate decision-making events involve the interplay of many molecular processes, ranging from signal transduction to genetic regulation, as well as a set of molecular and physiological feedback loops. Each aspect offers a rich field of investigation in its own right, but to understand the whole process, even in simple terms, we need to consider them together. Here we attempt to characterise this process by focussing on the roles of noise during cell fate decisions.

View Article and Find Full Text PDF