Publications by authors named "A Guignandon"

In this study, we investigated gene expression in vitro of human primary Aortic smooth muscle cells (AoSMCs) in response to 9% physiological dynamic stretch over a 4 to 72-h timeframe using RT-qPCR. AoSMC were derived from primary culture and were exposed to continuous cycles of stretch and relaxation at 1 Hz by a computer-controlled Flex Jr.™ Tension System.

View Article and Find Full Text PDF
Article Synopsis
  • The European Space Agency (ESA) regularly updates its science plans by talking to scientists about what they need to know.
  • The SSCWP 9 document focuses on "Biology in Space" and discusses important questions that scientists want to answer about how living things adapt to space.
  • One big question is how different organisms change at the molecular level when they are in microgravity, which could help both space missions and new technologies on Earth.
View Article and Find Full Text PDF

Progress in mechanobiology allowed us to better understand the important role of mechanical forces in the regulation of biological processes. Space research in the field of life sciences clearly showed that gravity plays a crucial role in biological processes. The space environment offers the unique opportunity to carry out experiments without gravity, helping us not only to understand the effects of gravitational alterations on biological systems but also the mechanisms underlying mechanoperception and cell/tissue response to mechanical and gravitational stresses.

View Article and Find Full Text PDF
Article Synopsis
  • The white paper discusses the need for research on how changes in gravity impact animal and human cellular and tissue systems, which is vital for understanding health in space.
  • Current knowledge gaps hinder the development of accurate models to predict long-term health impacts for astronauts during extended missions beyond low Earth orbit.
  • Researchers recommend a more integrated approach to connect biological and physiological effects to better address space adaptation challenges and promote astronaut health during deep space missions.
View Article and Find Full Text PDF

Dental implant failure is primarily due to peri-implantitis, a consequence of bacterial biofilm formation. Bacterial adhesion is strongly linked to micro-/nano-topographies of a surface; thus an assessment of surface texture parameters is essential to understand bacterial adhesion. In this study, mirror polished titanium samples (Ti6Al4V) were irradiated with a femtosecond laser (fs-L) at a wavelength of 1030 nm (infrared) with variable laser parameters (laser beam polarization, number, spacing and organization of the impacts).

View Article and Find Full Text PDF