Publications by authors named "A Groves"

Background: Colorectal cancers (CRCs) from people with biallelic germline likely pathogenic/pathogenic variants in MUTYH or NTHL1 exhibit specific single base substitution (SBS) mutational signatures, namely combined SBS18 and SBS36 (SBS18+SBS36), and SBS30, respectively. The aim was to determine if adenomas from biallelic cases demonstrated these mutational signatures at diagnostic levels.

Methods: Whole-exome sequencing of FFPE tissue and matched blood-derived DNA was performed on 9 adenomas and 15 CRCs from 13 biallelic MUTYH cases, on 7 adenomas and 2 CRCs from 5 biallelic NTHL1 cases and on 27 adenomas and 26 CRCs from 46 non-hereditary (sporadic) participants.

View Article and Find Full Text PDF

Objective: To describe the trends in percentage oxygen requirement and mode of respiratory support delivered to extremely premature infants in the 12 weeks after birth.

Study Design: This is a retrospective study of extremely premature infants (≤27 weeks) discharged from neonatal intensive care units managed by Pediatrix Medical Group between January 1, 2016, and December 31, 2021. Demographic and daily clinical data (mode of respiratory support and fraction of inspired oxygen [FiO]) were extracted from the Pediatrix Clinical Data Warehouse.

View Article and Find Full Text PDF

Recent genetic studies have revealed that hemimegalencephaly (HME) is a multi-system disorder associated with germline or mosaic variants within the PI3K-mTOR-GATOR1 signaling pathways. Patients with HME typically develop drug-resistant epilepsy necessitating extensive evaluation, hemispherectomy, and long-term management. We describe the role of a multidisciplinary team (MDT) for the diagnosis and management of recent patients with HME at UCLA who underwent hemispherectomy.

View Article and Find Full Text PDF

Introduction: African American women have a higher prevalence of hypertension than women of other ethnicities. The increasing prevalence of hypertension among this population is alarming.

Methods: This was an 8-week feasibility study.

View Article and Find Full Text PDF
Article Synopsis
  • Cochlear hair cells are damaged by loud sounds, certain drugs, and aging, leading to irreversible hearing loss since they don't regenerate in mammals.
  • Research has shown that using a combination of three specific hair cell transcription factors can reprogram adjacent supporting cells into hair cell-like cells, particularly after inducing damage to the existing hair cells.
  • The reprogrammed cells displayed key characteristics of mature hair cells and remained responsive to reprogramming efforts for at least 6 weeks after damage, indicating potential for hearing restoration in chronically deaf individuals.
View Article and Find Full Text PDF