Publications by authors named "A Groboillot"

Over the decades, conventional in vitro culture systems and animal models have been used to study physiology, nutrient or drug metabolisms including mechanical and physiopathological aspects. However, there is an urgent need for Integrated Testing Strategies (ITS) and more sophisticated platforms and devices to approach the real complexity of human physiology and provide reliable extrapolations for clinical investigations and personalized medicine. Organ-on-a-chip (OOC), also known as a microphysiological system, is a state-of-the-art microfluidic cell culture technology that sums up cells or tissue-to-tissue interfaces, fluid flows, mechanical cues, and organ-level physiology, and it has been developed to fill the gap between in vitro experimental models and human pathophysiology.

View Article and Find Full Text PDF

Bacteria can bind on clothes, but the impacts of textiles leachables on cutaneous bacteria remain unknown. Here, we studied for the first time the effects of cotton and flax obtained through classical and soft ecological agriculture on the representatives and bacteria of the cutaneous microbiota. Crude flax showed an inhibitory potential on bacterial lawns whereas cotton had no effect.

View Article and Find Full Text PDF

spp. and spp. are widely distributed bacteria in the environment and are found in association with animals and humans.

View Article and Find Full Text PDF

The skin constitutes with its microbiota the first line of body defense against exogenous stress including air pollution. Especially in urban or sub-urban areas, it is continuously exposed to many environmental pollutants including gaseous nitrogen dioxide (gNO). Nowadays, it is well established that air pollution has major effects on the human skin, inducing various diseases often associated with microbial dysbiosis.

View Article and Find Full Text PDF

Microbial endocrinology is studying the response of microorganisms to hormones and neurohormones and the microbiota production of hormones-like molecules. Until now, it was mainly applied to the gut and revealed that the intestinal microbiota should be considered as a real organ in constant and bilateral interactions with the whole human body. The skin harbours the second most abundant microbiome and contains an abundance of nerve terminals and capillaries, which in addition to keratinocytes, fibroblasts, melanocytes, dendritic cells and endothelial cells, release a huge diversity of hormones and neurohormones.

View Article and Find Full Text PDF