Publications by authors named "A Gritli-Linde"

BMP signaling is crucial for differentiation of secretory ameloblasts, the cells that secrete enamel matrix. However, whether BMP signaling is required for differentiation of maturation-stage ameloblasts (MA), which are instrumental for enamel maturation into hard tissue, is hitherto unknown. To address this, we used an in vivo genetic approach which revealed that combined deactivation of the and genes in the murine dental epithelium causes development of dysmorphic and dysfunctional MA.

View Article and Find Full Text PDF

In mammals Homer1, Homer2 and Homer3 constitute a family of scaffolding proteins with key roles in Ca signaling and Ca transport. In rodents, Homer proteins and mRNAs have been shown to be expressed in various postnatal tissues and to be enriched in brain. However, whether the Homers are expressed in developing tissues is hitherto largely unknown.

View Article and Find Full Text PDF

Deciphering how signaling pathways interact during development is necessary for understanding the etiopathogenesis of congenital malformations and disease. In several embryonic structures, components of the Hedgehog and retinoic acid pathways, two potent players in development and disease are expressed and operate in the same or adjacent tissues and cells. Yet whether and, if so, how these pathways interact during organogenesis is, to a large extent, unclear.

View Article and Find Full Text PDF

Longitudinal bone growth in children is sustained by growth plates, narrow discs of cartilage that provide a continuous supply of chondrocytes for endochondral ossification. However, it remains unknown how this supply is maintained throughout childhood growth. Chondroprogenitors in the resting zone are thought to be gradually consumed as they supply cells for longitudinal growth, but this model has never been proved.

View Article and Find Full Text PDF

The interaction between signaling pathways is a central question in the study of organogenesis. Using the developing murine tongue as a model, we uncovered unknown relationships between Sonic hedgehog (SHH) and retinoic acid (RA) signaling. Genetic loss of SHH signaling leads to enhanced RA activity subsequent to loss of SHH-dependent expression of Cyp26a1 and Cyp26c1.

View Article and Find Full Text PDF