In hybrid metal halide perovskites, chiroptical properties typically arise from structural symmetry breaking by incorporating a chiral A-site organic cation within the structure, which may limit the compositional space. Here we demonstrate highly efficient remote chirality transfer where chirality is imposed on an otherwise achiral hybrid metal halide semiconductor by a proximal chiral molecule that is not interspersed as part of the structure yet leads to large circular dichroism dissymmetry factors (g) of up to 10. Density functional theory calculations reveal that the transfer of stereochemical information from the chiral proximal molecule to the inorganic framework is mediated by selective interaction with divalent metal cations.
View Article and Find Full Text PDFHematite (α-FeO) is a promising transition metal oxide for various energy conversion and storage applications due to its advantages of low cost, high abundance, and good chemical stability. However, its low carrier mobility and electrical conductivity have hindered the wide application of hematite-based devices. Fundamentally, this is mainly caused by the formation of small polarons, which show conduction through thermally activated hopping.
View Article and Find Full Text PDFBatteries based on solid-state electrolytes, including LiLaZrO (LLZO), promise improved safety and increased energy density; however, atomic disorder at grain boundaries and phase boundaries can severely deteriorate their performance. Machine-learning (ML) interatomic potentials offer a uniquely compelling solution for simulating chemical processes, rare events, and phase transitions associated with these complex interfaces by mixing high scalability with quantum-level accuracy, provided that they can be trained to properly address atomic disorder. To this end, we report the construction and validation of an ML potential that is specifically designed to simulate crystalline, disordered, and amorphous LLZO systems across a wide range of conditions.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
November 2021
Lithium-rich oxychloride antiperovskites are promising solid electrolytes for enabling next-generation batteries. Here, we report a comprehensive study varying Li concentrations in [Formula: see text] using molecular dynamics simulations. The simulations accurately capture the complex interactions between Li vacancies ([Formula: see text]), the dominant mobile species in [Formula: see text].
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
November 2021
Superionic solid electrolytes have widespread use in energy devices, but the fundamental motivations for fast ion conduction are often elusive. In this Perspective, we draw upon atomistic simulations of a wide range of superionic conductors to illustrate some ways frustration can lower diffusion cation barriers in solids. Based on our studies of halides, oxides, sulfides and hydroborates and a survey of published reports, we classify three types of frustration that create competition between different local atomic preferences, thereby flattening the diffusive energy landscape.
View Article and Find Full Text PDF