Helix phase plates are used in a variety of applications from optical trapping to astronomy. Tunable helix phase plates based on the Alvarez-Lohmann principle allow variation of the topological charge of the helix by rotating the phase plates with respect to each other around the optical axis. Current designs generate an undesired inverse phase in the section determined by the rotation angle.
View Article and Find Full Text PDFA key feature of Alvarez lenses is that they may be tuned in focal length using lateral rather than axial translation, thus reducing the overall length of a focus-tunable optical system. Nevertheless the bulk of classical microsystems actuators limits further miniaturization. We present here a new, ultrathin focus-tunable Alvarez lens fabricated using molding techniques and actuated using liquid crystal elastomer (LCE) artificial muscle actuators.
View Article and Find Full Text PDFWe present the design, fabrication and characterization of hydraulically-tunable hyperchromatic lenses for two-dimensional (2D) spectrally-resolved spectral imaging. These hyperchromatic lenses, consisting of a positive diffractive lens and a tunable concave lens, are designed to have a large longitudinal chromatic dispersion and thus axially separate the images of different wavelengths from each other. 2D objects of different wavelengths can consequently be imaged using the tunability of the lens system.
View Article and Find Full Text PDFWe present two versions of a chromatic confocal matrix sensor for the snapshot acquisition of three-dimensional objects. The first version contains separate illumination and detection pinhole arrays, while the second version uses a single pinhole array in double pass. The discrete lateral measurement points defined by the illumination and detection pinhole arrays are evaluated in parallel with a hyperspectral detection module.
View Article and Find Full Text PDFThe photoluminescence intensity of group III nitrides, nanowires, and heterostructures (NWHs) strongly depends on the environmental H(2) and O(2) concentration. We used this opto-chemical transducer principle for the realization of a gas detector. To make this technology prospectively available to commercial gas-monitoring applications, a large-scale laboratory setup was miniaturized.
View Article and Find Full Text PDF