The -decay fine structure of Hg and Au was studied by means of decay spectroscopy. Two experiments were performed at the Accelerator Laboratory of the University of Jyväskylä (JYFL), Finland, utilizing the recoil separator RITU and a digital data acquisition system. The heavy-ion induced fusion-evaporation reactions Kr + Ru and Kr + Mo were used to produce the Hg and Au nuclei, respectively.
View Article and Find Full Text PDFThe β decay of ^{208}Hg into the one-proton hole, one neutron-particle _{81}^{208}Tl_{127} nucleus was investigated at CERN-ISOLDE. Shell-model calculations describe well the level scheme deduced, validating the proton-neutron interactions used, with implications for the whole of the N>126, Z<82 quadrant of neutron-rich nuclei. While both negative and positive parity states with spin 0 and 1 are expected within the Q_{β} window, only three negative parity states are populated directly in the β decay.
View Article and Find Full Text PDF