Human protein kinase CK2 is an emerging target for neoplastic diseases. Potent lead structures for human CK2 inhibitors are derived from dibenzofuranones. Two new derivatives, 7,9-dichloro-1,2-dihydro-8-hydroxy-4-[(4-methoxyphenylamino)-methylene]dibenzo[,]furan-3(2)-one () and ()-1,3-dichloro-6-[(4-methoxyphenylimino)-methyl]dibenzo[,]furan-2,7-diol () were tested for inhibition of CK2 and induction of apoptosis in LNCaP cells.
View Article and Find Full Text PDFHuman protein kinase CK2 has emerged as promising target for the treatment of neoplastic diseases. The vast majority of kinase inhibitors known today target the ATP binding site, which is highly conserved among kinases and hence leads to limited selectivity. In order to identify non-ATP competitive inhibitors, a 12-mer peptide library of 6 × 10⁵ variants was displayed on the surface of by autodisplay.
View Article and Find Full Text PDFBackground: Human protein kinase CK2 represents a novel therapeutic target for neoplastic diseases. Inhibitors are in need to explore the druggability and the therapeutic options of this enzyme. A bottleneck in the search for new inhibitors is the availability of the target for testing.
View Article and Find Full Text PDFFour series of carbazole derivatives, including N-substituted-hydroxycarbazoles, oxazinocarbazoles, isoxazolocarbazolequinones, and pyridocarbazolequinones, were studied using diverse biological test methods such as a CE-based assay for CK2 activity measurement, a cytotoxicity assay with IPC-81 cell line, determination of MIC of carbazole derivatives as antibacterial agents, a Plasmodium falciparum susceptibility assay, and an ABCG2-mediated mitoxantrone assay. Two oxazinocarbazoles Ib and Ig showed CK2 inhibition with IC50 = 8.7 and 14.
View Article and Find Full Text PDF