Publications by authors named "A Grasselli"

Female fertility plays a decisive role in the reproduction of mammals, with related issues that include oocyte or embryo quality, establishment of pregnancy, and the physiology of the tissues that contribute to reproduction and metabolic disorders associated with reproductive failure. Although reproductive failure may be attributed to various factors in different species, female infertility is largely controlled by a number of molecular signals that can be regulated in a cycle- and tissue-dependent manner.

View Article and Find Full Text PDF

Chorion, amnion and villi are reservoirs of mesenchymal stromal cells (StC) and the hypothesis that StC from fetal tissues retain higher plasticity compared to adult StC has been suggested. Aimed at investigating this aspect, a series of in vitro experiments were performed with StC isolated from first trimester human chorionic villi (CVStC). CVStC were cultured in: (i) standard mesenchymal medium (MM) and (ii) AmniomaxII® (AM), specifically designed to grow amnion-derived cells in prenatal diagnostic procedures.

View Article and Find Full Text PDF

We recently identified in prostate tumors (PCa) a transcriptional prognostic signature comprising a significant number of genes differentially regulated in patients with worse clinical outcome. Induction of up-regulated genes was due to chromatin remodeling by a combinatorial complex between estrogen receptor (ER)-β and endothelial nitric oxide synthase (eNOS). Here we show that this complex can also repress transcription of prognostic genes that are down-regulated in PCa, such as the glutathione transferase gene GSTP1.

View Article and Find Full Text PDF

This review is based on novel observations from our laboratory on the nuclear translocation and functional role of endothelial nitric oxide synthase (eNOS) in endothelial and prostate cancer (PCa) epithelial cells. Nitric oxide (NO), the product of eNOS, is a free radical involved in the physiology and pathophysiology of living organisms and in a variety of biological processes including the maintenance of vascular homeostasis. Of relevance in this context is the role that estrogens play in the apoptotic process and the migration of endothelial cells through the regulation of target genes such as eNOS itself.

View Article and Find Full Text PDF

Objective: Smad-interacting protein-1 (Sip1/ZEB2) is a transcriptional repressor of the telomerase reverse transcriptase catalytic subunit (Tert) and has recently been identified as a key regulator of embryonic cell fate with a phenotypic effect similar, in our opinion, to that reported for nitric oxide (NO). Remarkably, SIP1/ZEB2 is a known target of the microRNA 200 (miR-200) family. In this light, we postulated that Sip1/ZEB2 and the miR-200 family could play a role during the NO-dependent differentiation of mES.

View Article and Find Full Text PDF