Publications by authors named "A Gouble"

Sickle cell disease is a devastating blood disorder that originates from a single point mutation in the HBB gene coding for hemoglobin. Here, we develop a GMP-compatible TALEN-mediated gene editing process enabling efficient HBB correction via a DNA repair template while minimizing risks associated with HBB inactivation. Comparing viral versus non-viral DNA repair template delivery in hematopoietic stem and progenitor cells in vitro, both strategies achieve comparable HBB correction and result in over 50% expression of normal adult hemoglobin in red blood cells without inducing β-thalassemic phenotype.

View Article and Find Full Text PDF

Despite the remarkable success of autologous chimeric antigen receptor (CAR) T cells, some patients relapse due to tumor antigen escape and low or uneven antigen expression, among other mechanisms. Therapeutic options after relapse are limited, emphasizing the need to optimize current approaches. In addition, there is a need to develop allogeneic "off-the-shelf" therapies from healthy donors that are readily available at the time of treatment decision and can overcome limitations of current autologous approaches.

View Article and Find Full Text PDF
Article Synopsis
  • Universal CAR T-cell therapies have the potential to transform cancer treatment and enhance patient outcomes by effectively killing tumor cells without being attacked by the host immune system.
  • Researchers developed a novel immune-evasive universal CAR T-cell framework using TALEN gene editing and DNA matrices, which allows these T-cells to remain active without damaging the host's own tissues.
  • This advanced gene editing technique enables the modified T-cells to evade immune attacks, improving their persistence and effectiveness against tumors, thereby paving the way for widespread clinical use of universal CAR T-cells in various treatment settings.
View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is a disease with high incidence of relapse that is originated and maintained from leukemia stem cells (LSCs). Hematopoietic stem cells can be distinguished from LSCs by an array of cell surface antigens such as CD123, thus a candidate to eliminate LSCs using a variety of approaches, including CAR T cells. Here, we evaluate the potential of allogeneic gene-edited CAR T cells targeting CD123 to eliminate LSCs (UCART123).

View Article and Find Full Text PDF

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare hematologic malignancy with poor outcomes with conventional therapy. Nearly 100% of BPDCNs overexpress interleukin 3 receptor subunit alpha (CD123). Given that CD123 is differentially expressed on the surface of BPDCN cells, it has emerged as an attractive therapeutic target.

View Article and Find Full Text PDF