In the paper, new detection methods that can be used to detect signals in a miniature MEMS (Micro-Electro-Mechanical System) electron microscope were presented. The methods were designed to fit the structure of the developed MEMS microscope, equipped with an electron-optical microcolumn and a scanning system based on an octupole deflector. In the experiments carried out, imaging was performed using a system of three silicon detectors placed above, below, and at the sample level and integrated with the octupole deflection system.
View Article and Find Full Text PDFThis article describes a miniature electron beam scanning system based on an octupole electrode as the key stage of the implementation of the MEMS electron microscope. The scanning system consists of a silicon electrode with a central hole, containing 8 properly powered elements and a special electronic system controlling voltage. Octupole electrode was made using MEMS technology.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
August 2007
Desorption/ionization from porous silicon dioxide (DIOSD), in combination with a standard matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) instrument, was used for the identification of catecholamines in the human peripheral blood lymphocytes. A routine MALDI-TOF analysis does not allow for sensitive detection of low molecular mass compounds (i.e.
View Article and Find Full Text PDFA method has been developed for laser desorption/ionization of catecholamines from porous silicon. This methodology is particularly attractive for analysis of small molecules. MALDI TOF mass spectrometry, although a very sensitive technique, utilizes matrices that need to be mixed with the sample prior to their analysis.
View Article and Find Full Text PDF