As a result of global warming and climate change, the number and intensity of weather events such as droughts, heat waves, and floods are increasing, resulting in major losses in crop yield worldwide. Combined with the accumulation of different pollutants, this situation is leading to a gradual increase in the complexity of environmental factors affecting plants. We recently used the term 'multifactorial stress combination' (MFSC) to describe the impact of three or more stressors occurring simultaneously or sequentially on plants.
View Article and Find Full Text PDFClimate change poses significant challenges to global agriculture, with rising temperatures, altered precipitation patterns, and increased frequency of extreme weather events threatening crop yields. These changes exceed the adaptability thresholds of many crops, decreasing their yield and threatening food security. At plant physiological levels, climate change-induced stressors disrupt photosynthesis, growth, and reproductive processes, contributing to a reduced productivity.
View Article and Find Full Text PDFAfter the perception of vegetation proximity by phytochrome photoreceptors, shade-avoider plants initiate a set of responses known as the shade avoidance syndrome (SAS). Shade perception by the phytochrome B (phyB) photoreceptor unleashes the PHYTOCHROME INTERACTING FACTORs and initiates SAS responses. In Arabidopsis (Arabidopsis thaliana) seedlings, shade perception involves rapid and massive changes in gene expression, increases auxin production, and promotes hypocotyl elongation.
View Article and Find Full Text PDFClimate change induces significant abiotic stresses that adversely affect crop yields. One promising solution to improve plant resilience under adverse conditions is the application of exogenous salicylic acid (SA). However, its negative effects on growth and development are a concern.
View Article and Find Full Text PDF