A high-frequency, in situ fluorescence probe, called Fluocopée®, has been developed in order to better monitor variations in both the quality and quantity of dissolved organic matter within various aquatic environments (e.g. wastewater, receiving environments) thanks to a wide choice of 29 measured Excitation/Emission wavelength pairs.
View Article and Find Full Text PDFWe show that the dynamics of high-intensity laser pulses undergoing self-focused propagation in a nonlinear medium can be understood in terms of the topological constraints imposed by the formation and evolution of spatiotemporal optical vortices (STOVs). STOVs are born from pointlike phase defects on the sides of the pulse nucleated by spatiotemporal phase shear. These defects grow into closed loops of spatiotemporal vorticity that initially exclude the pulse propagation axis, but then reconnect to form a pair of toroidal vortex rings that wrap around it.
View Article and Find Full Text PDFWe investigated the filamentation in air of 7 ps laser pulses of up to 200 mJ energy from a 1.03 μm-wavelength Yb:YAG laser at repetition rates up to =1. Interferograms of the wake generated show that while pulses in a train of repetition rate =0.
View Article and Find Full Text PDFMonitoring the removal of organic micropollutants (OMPs) in advanced wastewater treatment facilities requires expensive and time-consuming analytical methods that cannot be installed online. Spectroscopic techniques such as fluorescence excitation/emission spectroscopy were demonstrated to offer the potential for monitoring OMPs removal in conventional wastewater treatment plants or ozonation pilots but their application to activated carbon (AC) adsorption processes was only investigated at lab scale and not in real treatment facilities. In this study, indexes from fluorescence emission/excitation matrices (EEMs) were used to find correlations with the removal of 28 OMPs from a large-scale AC pilot in fluidized bed employed for wastewater advanced treatment, as well as from batch experiments.
View Article and Find Full Text PDFPhys Rev Lett
September 2020
Nonlinear self-guided propagation of intense long-wave infrared (LWIR) laser pulses is of significant recent interest, as it promises high power transmission without beam breakup and multifilamentation. Central to self-guiding is the mechanism for the arrest of self-focusing collapse. Here, we show that discrete avalanche sites centered on submicron aerosols can arrest self-focusing, providing a new mechanism for self-guided propagation of moderate intensity LWIR pulses in outdoor environments.
View Article and Find Full Text PDF