The rapid growth of graphite market is highly coupled with the increasing demand for Li-ion grade graphite, the production of which results in significant losses of the graphitic material in the form of graphite fines. Herein, for the first time, we report an effective strategy to utilize industrial waste graphite fines through the development of graphene oxide-based nanohybrids as non-toxic and efficient antibacterial agents. To achieve this, graphene oxide (GO) was initially synthesized using industrial waste graphite fines as a graphitic precursor.
View Article and Find Full Text PDFThe lanthanum ferrite perovskite (LaFO) was synthesized using a citric combustion route and then modified with a porous graphitic nitride nanosheet the wet impregnation-assisted ultrasonic method to produce La.FO@PgNS. Various techniques such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy, X-ray photoelectron spectroscopy (XPS), ultraviolet diffuse reflectance spectroscopy (UV-DRS), and Tauc plot analysis were employed to confirm the functional moieties, crystallinity, phase change, morphology, composition, and bandgap of La.
View Article and Find Full Text PDFFrom the plethora of energy-intensive synthetic processes, ammonia production has a particularly negative impact due to the high-energy consumption caused by the Haber-Bosch process and the high greenhouse gas (GHG) emission rate. Thus, new and effective ways to activate N and synthesise NH are crucial to reduce production costs and the anthropogenic footprint derived from the current harsh reaction conditions. In this study, two-dimensional materials have been employed in the photoactivation of nitrogen in an aqueous medium; M(II)M(III) (with M = Cu or CuNi, and M = Cr or Al) layered double hydroxides have been synthesised using a simple, economical and scalable co-precipitation/filtration method.
View Article and Find Full Text PDFTo promote the diffusion on the market of solid oxide fuel cell (SOFC) devices, the use of fuels other than the most appealing hydrogen and also decreasing the working temperature could show the way forward. In the first part, we concentrated our efforts on cathodes; hereby, we focused on anodes and concentrated our efforts to develop a sustainable multifuel anode. We decided to develop LSGF (LaSrGaFeO)-based nanocomposites by depositing manganite oxide to enhance the performance toward propane.
View Article and Find Full Text PDFLaCaFeCuO, undoped (LF) and Ca, Cu-doped (LCFC), powders, obtained by different industrial procedures, are compared to evaluate reproducibility and scale-up in different industrial synthetic approaches: flame spray pyrolysis (FSP) and coprecipitation (COP). Also the effects of varying composition (doping) and FSP process variability are considered as comparative studies on morphological, crystallographic, redox and compositional properties, and functional activity. A model reaction (CO + NO) and reactions with an automotive exhaust mixture were carried out.
View Article and Find Full Text PDF